-
Notifications
You must be signed in to change notification settings - Fork 25
Open
Description
Hi, I used following code for DESeq2 workflow but found some differences in results
gse
# A SummarizedExperiment-tibble abstraction: 3,532,606 × 30
# Features=36047 | Samples=98
dds <- DESeqDataSet(gse, design = ~ batch + sex + status)
dds <- DESeq(dds)
res <- results(dds)
summary(res)
out of 35983 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 188, 0.52%
LFC < 0 (down) : 62, 0.17%
outliers [1] : 99, 0.28%
low counts [2] : 15312, 43%
(mean count < 7)
I also performed same SE object with same variables using tidybulk
da <- gse |> test_differential_abundance(~batch + sex + status, method = "DESeq2")
da_res <- da %>% pivot_transcript()
# to compare results
all.equal(rownames(res), da_res$.feature)
[1] TRUE
sum(da_res$padj < 0.1, na.rm=TRUE)
[1] 321
table(base_sig = res$padj < .1, tidy_sig = da_res$padj < .1)
tidy_sig
base_sig FALSE TRUE
FALSE 20119 255
TRUE 224 26
Please guide where it went wrong?
Metadata
Metadata
Assignees
Labels
No labels