Skip to content

Discrepancy in DE results from base DESeq2 and tidybulk DESeq2 method #328

@MSaadfarooq

Description

@MSaadfarooq

Hi, I used following code for DESeq2 workflow but found some differences in results

gse
# A SummarizedExperiment-tibble abstraction: 3,532,606 × 30
# Features=36047 | Samples=98

dds <- DESeqDataSet(gse, design = ~ batch + sex + status) 
dds <- DESeq(dds)
res <- results(dds)
summary(res)
out of 35983 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 188, 0.52%
LFC < 0 (down)     : 62, 0.17%
outliers [1]       : 99, 0.28%
low counts [2]     : 15312, 43%
(mean count < 7)

I also performed same SE object with same variables using tidybulk

da <- gse |> test_differential_abundance(~batch + sex + status, method = "DESeq2")
da_res <- da %>% pivot_transcript()

# to compare results
all.equal(rownames(res), da_res$.feature)
[1] TRUE
sum(da_res$padj < 0.1, na.rm=TRUE)
[1] 321
table(base_sig = res$padj < .1, tidy_sig = da_res$padj < .1)
        tidy_sig
base_sig FALSE  TRUE
   FALSE 20119   255
   TRUE    224    26

Please guide where it went wrong?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions