Skip to content

Commit c352a3f

Browse files
committed
Merge branch 'develop' of https://github.com/stdlib-js/stdlib into develop
2 parents 21f2041 + b02e481 commit c352a3f

File tree

19 files changed

+1424
-34
lines changed

19 files changed

+1424
-34
lines changed

lib/node_modules/@stdlib/stats/base/dists/bradford/skewness/test/test.js

Lines changed: 1 addition & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -80,14 +80,7 @@ tape( 'the function returns the skewness of a bradford distribution', function t
8080
delta = abs( y - expected[ i ] );
8181

8282
/*
83-
* NOTE: the tolerance is set high in this case due to the numerically challenging nature of the Bradford distribution skewness formula, which involves:
84-
*
85-
* 1. Complex expressions with nested logarithmic terms ln(1+c)
86-
* 2. Square roots in both numerator and denominator
87-
* 3. Products and differences of terms involving c and ln(1+c) that can be sensitive to floating-point precision
88-
* 4. The SQRT2 factor amplifying any accumulated numerical errors
89-
*
90-
* Out of 1000 test cases, only two require tolerance higher than 500*EPS (specifically c=0.4 needs ~20000*EPS).
83+
* TODO: the significant divergence from SciPy appears to stem from the computation of the natural log. We should follow up to ensure that our ln implementation is sufficiently accurate.
9184
*/
9285
tol = 20000.0 * EPS * abs( expected[ i ] );
9386
t.ok( delta <= tol, 'within tolerance. x: '+x[i]+'. y: '+y+'. E: '+expected[ i ]+'. Δ: '+delta+'. tol: '+tol+'.' );

lib/node_modules/@stdlib/stats/base/dists/bradford/skewness/test/test.native.js

Lines changed: 1 addition & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -89,14 +89,7 @@ tape( 'the function returns the skewness of a Bradford distribution', opts, func
8989
delta = abs( y - expected[ i ] );
9090

9191
/*
92-
* NOTE: the tolerance is set high in this case due to the numerically challenging nature of the Bradford distribution skewness formula, which involves:
93-
*
94-
* 1. Complex expressions with nested logarithmic terms ln(1+c)
95-
* 2. Square roots in both numerator and denominator
96-
* 3. Products and differences of terms involving c and ln(1+c) that can be sensitive to floating-point precision
97-
* 4. The SQRT2 factor amplifying any accumulated numerical errors
98-
*
99-
* Out of 1000 test cases, only two require tolerance higher than 500*EPS (specifically c=0.4 needs ~20000*EPS).
92+
* TODO: the significant divergence from SciPy appears to stem from the computation of the natural log. We should follow up to ensure that our ln implementation is sufficiently accurate.
10093
*/
10194
tol = 20000.0 * EPS * abs( expected[ i ] );
10295
t.ok( delta <= tol, 'within tolerance. c: '+c[i]+'. y: '+y+'. E: '+expected[ i ]+'. Δ: '+delta+'. tol: '+tol+'.' );

lib/node_modules/@stdlib/stats/base/dists/pareto-type1/quantile/README.md

Lines changed: 100 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ var quantile = require( '@stdlib/stats/base/dists/pareto-type1/quantile' );
5555

5656
#### quantile( p, alpha, beta )
5757

58-
Evaluates the [quantile function][quantile-function] for a [Pareto (Type I)][pareto-distribution] distribution with parameters `alpha` (shape parameter) and `beta` ( scale parameter).
58+
Evaluates the [quantile function][quantile-function] for a [Pareto (Type I)][pareto-distribution] distribution with parameters `alpha` (shape parameter) and `beta` (scale parameter).
5959

6060
```javascript
6161
var y = quantile( 0.8, 2.0, 1.0 );
@@ -113,7 +113,7 @@ y = quantile( 0.4, 1.0, 0.0 );
113113

114114
#### quantile.factory( alpha, beta )
115115

116-
Returns a function for evaluating the [quantile function][quantile-function] of a [Pareto (Type I)][pareto-distribution] distribution with parameters `alpha` (shape parameter) and `beta` ( scale parameter).
116+
Returns a function for evaluating the [quantile function][quantile-function] of a [Pareto (Type I)][pareto-distribution] distribution with parameters `alpha` (shape parameter) and `beta` (scale parameter).
117117

118118
```javascript
119119
var myquantile = quantile.factory( 2.5, 0.5 );
@@ -157,6 +157,104 @@ for ( i = 0; i < 10; i++ ) {
157157

158158
<!-- /.examples -->
159159

160+
<!-- C interface documentation. -->
161+
162+
* * *
163+
164+
<section class="c">
165+
166+
## C APIs
167+
168+
<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->
169+
170+
<section class="intro">
171+
172+
</section>
173+
174+
<!-- /.intro -->
175+
176+
<!-- C usage documentation. -->
177+
178+
<section class="usage">
179+
180+
### Usage
181+
182+
```c
183+
#include "stdlib/stats/base/dists/pareto-type1/quantile.h"
184+
```
185+
186+
#### stdlib_base_dists_pareto_type1_quantile( p, alpha, beta )
187+
188+
Evaluates the [quantile function][quantile-function] for a [Pareto (Type I)][pareto-distribution] distribution with parameters `alpha` (shape parameter) and `beta` (scale parameter).
189+
190+
```c
191+
double y = stdlib_base_dists_pareto_type1_quantile( 0.8, 2.0, 1.0 );
192+
// returns ~2.236
193+
```
194+
195+
The function accepts the following arguments:
196+
197+
- **p**: `[in] double` input probability.
198+
- **alpha**: `[in] double` shape parameter.
199+
- **beta**: `[in] double` scale parameter.
200+
201+
```c
202+
double stdlib_base_dists_pareto_type1_quantile( const double p, const double alpha, const double beta );
203+
```
204+
205+
</section>
206+
207+
<!-- /.usage -->
208+
209+
<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
210+
211+
<section class="notes">
212+
213+
</section>
214+
215+
<!-- /.notes -->
216+
217+
<!-- C API usage examples. -->
218+
219+
<section class="examples">
220+
221+
### Examples
222+
223+
```c
224+
#include "stdlib/stats/base/dists/pareto-type1/quantile.h"
225+
#include <stdlib.h>
226+
#include <stdio.h>
227+
228+
static double random_uniform( const double min, const double max ) {
229+
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
230+
return min + ( v*(max-min) );
231+
}
232+
233+
int main( void ) {
234+
double alpha;
235+
double beta;
236+
double p;
237+
double y;
238+
int i;
239+
240+
for ( i = 0; i < 25; i++ ) {
241+
p = random_uniform( 0.0, 1.0 );
242+
alpha = random_uniform( 1.0, 10.0 );
243+
beta = random_uniform( 1.0, 10.0 );
244+
y = stdlib_base_dists_pareto_type1_quantile( p, alpha, beta );
245+
printf( "p: %lf, α: %lf, β: %lf, Q(p;α,β): %lf\n", p, alpha, beta, y );
246+
}
247+
}
248+
```
249+
250+
</section>
251+
252+
<!-- /.examples -->
253+
254+
</section>
255+
256+
<!-- /.c -->
257+
160258
<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->
161259

162260
<section class="related">

lib/node_modules/@stdlib/stats/base/dists/pareto-type1/quantile/benchmark/benchmark.js

Lines changed: 6 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -21,10 +21,8 @@
2121
// MODULES //
2222

2323
var bench = require( '@stdlib/bench' );
24-
var Float64Array = require( '@stdlib/array/float64' );
25-
var uniform = require( '@stdlib/random/base/uniform' );
24+
var uniform = require( '@stdlib/random/array/uniform' );
2625
var isnan = require( '@stdlib/math/base/assert/is-nan' );
27-
var EPS = require( '@stdlib/constants/float64/eps' );
2826
var pkg = require( './../package.json' ).name;
2927
var quantile = require( './../lib' );
3028

@@ -40,14 +38,9 @@ bench( pkg, function benchmark( b ) {
4038
var i;
4139

4240
len = 100;
43-
alpha = new Float64Array( len );
44-
beta = new Float64Array( len );
45-
p = new Float64Array( len );
46-
for ( i = 0; i < len; i++ ) {
47-
p[ i ] = uniform( 0.0, 1.0 );
48-
alpha[ i ] = uniform( EPS, 100.0 );
49-
beta[ i ] = uniform( EPS, 100.0 );
50-
}
41+
p = uniform( len, 0.0, 1.0 );
42+
alpha = uniform( len, 1.0, 100.0 );
43+
beta = uniform( len, 1.0, 100.0 );
5144

5245
b.tic();
5346
for ( i = 0; i < b.iterations; i++ ) {
@@ -74,13 +67,10 @@ bench( pkg+':factory', function benchmark( b ) {
7467
var i;
7568

7669
alpha = 100.56789;
77-
len = 100;
7870
beta = 55.54321;
7971
myquantile = quantile.factory( alpha, beta );
80-
p = new Float64Array( len );
81-
for ( i = 0; i < len; i++ ) {
82-
p[ i ] = uniform( 0.0, 1.0 );
83-
}
72+
len = 100;
73+
p = uniform( len, 0.0, 1.0 );
8474

8575
b.tic();
8676
for ( i = 0; i < b.iterations; i++ ) {
Lines changed: 67 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,67 @@
1+
/**
2+
* @license Apache-2.0
3+
*
4+
* Copyright (c) 2025 The Stdlib Authors.
5+
*
6+
* Licensed under the Apache License, Version 2.0 (the "License");
7+
* you may not use this file except in compliance with the License.
8+
* You may obtain a copy of the License at
9+
*
10+
* http://www.apache.org/licenses/LICENSE-2.0
11+
*
12+
* Unless required by applicable law or agreed to in writing, software
13+
* distributed under the License is distributed on an "AS IS" BASIS,
14+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15+
* See the License for the specific language governing permissions and
16+
* limitations under the License.
17+
*/
18+
19+
'use strict';
20+
21+
// MODULES //
22+
23+
var resolve = require( 'path' ).resolve;
24+
var bench = require( '@stdlib/bench' );
25+
var tryRequire = require( '@stdlib/utils/try-require' );
26+
var uniform = require( '@stdlib/random/array/uniform' );
27+
var isnan = require( '@stdlib/math/base/assert/is-nan' );
28+
var pkg = require( './../package.json' ).name;
29+
30+
31+
// VARIABLES //
32+
33+
var quantile = tryRequire( resolve( __dirname, './../lib/native.js' ) );
34+
var opts = {
35+
'skip': ( quantile instanceof Error )
36+
};
37+
38+
39+
// MAIN //
40+
41+
bench( pkg+'::native', opts, function benchmark( b ) {
42+
var alpha;
43+
var beta;
44+
var len;
45+
var p;
46+
var y;
47+
var i;
48+
49+
len = 100;
50+
p = uniform( len, 0.0, 1.0 );
51+
alpha = uniform( len, 1.0, 10.0 );
52+
beta = uniform( len, 1.0, 10.0 );
53+
54+
b.tic();
55+
for ( i = 0; i < b.iterations; i++ ) {
56+
y = quantile( p[ i % len ], alpha[ i % len ], beta[ i % len ] );
57+
if ( isnan( y ) ) {
58+
b.fail( 'should not return NaN' );
59+
}
60+
}
61+
b.toc();
62+
if ( isnan( y ) ) {
63+
b.fail( 'should not return NaN' );
64+
}
65+
b.pass( 'benchmark finished' );
66+
b.end();
67+
});

0 commit comments

Comments
 (0)