Skip to content

Commit b56430e

Browse files
committed
docs: add eqn divs
--- type: pre_commit_static_analysis_report description: Results of running static analysis checks when committing changes. report: - task: lint_filenames status: passed - task: lint_editorconfig status: passed - task: lint_markdown status: passed - task: lint_package_json status: na - task: lint_repl_help status: na - task: lint_javascript_src status: na - task: lint_javascript_cli status: na - task: lint_javascript_examples status: na - task: lint_javascript_tests status: na - task: lint_javascript_benchmarks status: na - task: lint_python status: na - task: lint_r status: na - task: lint_c_src status: na - task: lint_c_examples status: na - task: lint_c_benchmarks status: na - task: lint_c_tests_fixtures status: na - task: lint_shell status: na - task: lint_typescript_declarations status: na - task: lint_typescript_tests status: na - task: lint_license_headers status: passed ---
1 parent acd5a7c commit b56430e

File tree

1 file changed

+58
-0
lines changed
  • lib/node_modules/@stdlib/lapack/base/dgttrf

1 file changed

+58
-0
lines changed

lib/node_modules/@stdlib/lapack/base/dgttrf/README.md

Lines changed: 58 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -26,14 +26,28 @@ limitations under the License.
2626

2727
The `dgttrf` routine computes an LU factorization of a real n-by-n tridiagonal matrix A using elimination with partial pivoting and row interchanges. The factorization has the form:
2828

29+
<!-- <equation class="equation" label="eq:lu_decomposition" align="center" raw="A = L U" alt="Equation for LU factorization."> -->
30+
2931
```math
3032
A = L U
3133
```
3234

35+
<!-- <div class="equation" align="center" data-raw-text="A = L U" data-equation="eq:lu_decomposition"></div> -->
36+
37+
<!-- </equation> -->
38+
3339
where L is a product of permutation and unit lower bidiagonal matrices and U is upper triangular with nonzeros in only the main diagonal and first two superdiagonals.
3440

3541
For a tridiagonal matrix A, its elements are stored in three arrays:
3642

43+
<!-- <equation class="equation" label="eq:matrix_a" align="center" raw="A = \begin{bmatrix}
44+
d_1 & du_1 & 0 & \cdots & 0 \\
45+
dl_1 & d_2 & du_2 & \cdots & 0 \\
46+
0 & dl_2 & d_3 & \ddots & \vdots \\
47+
\vdots & \ddots & \ddots & \ddots & du_{n-1}\\
48+
0 & \cdots & 0 & dl_{n-1} & d_n
49+
\end{bmatrix}" alt="Representation of matrix A."> -->
50+
3751
```math
3852
A = \begin{bmatrix}
3953
d_1 & du_1 & 0 & \cdots & 0 \\
@@ -44,6 +58,16 @@ A = \begin{bmatrix}
4458
\end{bmatrix}
4559
```
4660

61+
<!-- <div class="equation" align="center" data-raw-text="A = \begin{bmatrix}
62+
d_1 & du_1 & 0 & \cdots & 0 \\
63+
dl_1 & d_2 & du_2 & \cdots & 0 \\
64+
0 & dl_2 & d_3 & \ddots & \vdots \\
65+
\vdots & \ddots & \ddots & \ddots & du_{n-1}\\
66+
0 & \cdots & 0 & dl_{n-1} & d_n
67+
\end{bmatrix}" data-equation="eq:matrix_a"></div> -->
68+
69+
<!-- </equation> -->
70+
4771
where:
4872

4973
- `dl` contains the subdiagonal elements
@@ -58,6 +82,14 @@ After factorization, the elements of L and U overwrite the input arrays, where:
5882

5983
The resulting L and U matrices have the following structure:
6084

85+
<!-- <equation class="equation" label="eq:matrix_l" align="center" raw="L = \begin{bmatrix}
86+
1 & 0 & 0 & \cdots & 0 \\
87+
l_1 & 1 & 0 & \cdots & 0 \\
88+
0 & l_2 & 1 & \ddots & \vdots \\
89+
\vdots & \ddots & \ddots & \ddots & 0 \\
90+
0 & \cdots & 0 & l_{n-1} & 1
91+
\end{bmatrix}" alt="Representation of matrix L as derived from DL."> -->
92+
6193
```math
6294
L = \begin{bmatrix}
6395
1 & 0 & 0 & \cdots & 0 \\
@@ -68,6 +100,24 @@ L = \begin{bmatrix}
68100
\end{bmatrix}
69101
```
70102

103+
<!-- <div class="equation" align="center" data-raw-text="L = \begin{bmatrix}
104+
1 & 0 & 0 & \cdots & 0 \\
105+
l_1 & 1 & 0 & \cdots & 0 \\
106+
0 & l_2 & 1 & \ddots & \vdots \\
107+
\vdots & \ddots & \ddots & \ddots & 0 \\
108+
0 & \cdots & 0 & l_{n-1} & 1
109+
\end{bmatrix}" data-equation="eq:matrix_l"></div> -->
110+
111+
<!-- </equation> -->
112+
113+
<!-- <equation class="equation" label="eq:matrix_u" align="center" raw="U = \begin{bmatrix}
114+
u_{1,1} & u_{1,2} & u_{1,3} & \cdots & 0 \\
115+
0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
116+
0 & 0 & u_{3,3} & \ddots & \ddots \\
117+
\vdots & \vdots & \ddots & \ddots & u_{n-1,n}\\
118+
0 & 0 & \cdots & 0 & u_{n,n}
119+
\end{bmatrix}" alt="Representation of matrix U as derived from D, DU, DU2."> -->
120+
71121
```math
72122
U = \begin{bmatrix}
73123
u_{1,1} & u_{1,2} & u_{1,3} & \cdots & 0 \\
@@ -78,6 +128,14 @@ U = \begin{bmatrix}
78128
\end{bmatrix}
79129
```
80130

131+
<!-- <div class="equation" align="center" data-raw-text="U = \begin{bmatrix}
132+
u_{1,1} & u_{1,2} & u_{1,3} & \cdots & 0 \\
133+
0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
134+
0 & 0 & u_{3,3} & \ddots & \ddots \\
135+
\vdots & \vdots & \ddots & \ddots & u_{n-1,n}\\
136+
0 & 0 & \cdots & 0 & u_{n,n}
137+
\end{bmatrix}" data-equation="eq:matrix_u"></div> -->
138+
81139
<!-- </equation> -->
82140

83141
where the `l_i` values are stored in `dl`, the diagonal elements `u_{i,i}` are stored in `d`, and the superdiagonal elements `u_{i,i+1}` and `u_{i,i+2}` are stored in `du` and `du2` respectively.

0 commit comments

Comments
 (0)