@@ -98,7 +98,8 @@ TEST(ProbDistributionsInvWishartCholesky, SpecialRNGTest) {
98
98
MatrixXd L = MatrixXd::Identity (k, k);
99
99
MatrixXd Z = MatrixXd::Zero (k, k);
100
100
for (int i = 0 ; i < N; i++) {
101
- Z += multiply_lower_tri_self_transpose (inv_wishart_cholesky_rng (k + 2 , L, rng));
101
+ Z += multiply_lower_tri_self_transpose (
102
+ inv_wishart_cholesky_rng (k + 2 , L, rng));
102
103
}
103
104
Z /= N;
104
105
for (int j = 0 ; j < k; j++) {
@@ -113,7 +114,7 @@ TEST(ProbDistributionsInvWishartCholesky, SpecialRNGTest) {
113
114
}
114
115
115
116
TEST (ProbDistributionsInvWishartCholesky, compareToInvWishart) {
116
- // Compare the marginal mean
117
+ // Compare the marginal mean
117
118
118
119
using Eigen::MatrixXd;
119
120
using Eigen::VectorXd;
@@ -132,12 +133,13 @@ TEST(ProbDistributionsInvWishartCholesky, compareToInvWishart) {
132
133
MatrixXd Z_mean = sigma / (k + 3 );
133
134
MatrixXd Z_est = MatrixXd::Zero (k, k);
134
135
for (int i = 0 ; i < N; i++) {
135
- Z_est += multiply_lower_tri_self_transpose (inv_wishart_cholesky_rng (k + 4 , L, rng));
136
+ Z_est += multiply_lower_tri_self_transpose (
137
+ inv_wishart_cholesky_rng (k + 4 , L, rng));
136
138
}
137
139
Z_est /= N;
138
140
for (int j = 0 ; j < k; j++) {
139
141
for (int i = 0 ; i < j; i++) {
140
- EXPECT_NEAR (Z_est (i, j), Z_mean (i, j), tol);
142
+ EXPECT_NEAR (Z_est (i, j), Z_mean (i, j), tol);
141
143
}
142
144
}
143
145
}
0 commit comments