@@ -682,30 +682,30 @@ constrained to have non-negative entries that sum to one.
682
682
### Definition of a Stochastic Matrix {-}
683
683
684
684
A column stochastic matrix \( X \in \mathbb{R}^{N \times M}\) is defined such
685
- that each column is a simplex. For column \( j \) (where \( 1 \leq j \leq M\) ):
685
+ that each column is a simplex. For column \( m \) (where \( 1 \leq m \leq M\) ):
686
686
687
687
$$
688
- X_{i, j } \geq 0 \quad \text{for } 1 \leq i \leq N,
688
+ X_{n, m } \geq 0 \quad \text{for } 1 \leq n \leq N,
689
689
$$
690
690
691
691
and
692
692
693
693
$$
694
- \sum_{i =1}^N X_{i, j } = 1.
694
+ \sum_{n =1}^N X_{n, m } = 1.
695
695
$$
696
696
697
697
A row stochastic matrix is any matrix whose transpose is a column stochastic matrix
698
698
(i.e. the rows of the matrix are simplexes)
699
699
700
700
701
701
$$
702
- X_{i, j } \geq 0 \quad \text{for } 1 \leq j \leq N,
702
+ X_{n, m } \geq 0 \quad \text{for } 1 \leq n \leq N,
703
703
$$
704
704
705
705
and
706
706
707
707
$$
708
- \sum_{j =1}^N X_{i, j } = 1.
708
+ \sum_{m =1}^N X_{n, m } = 1.
709
709
$$
710
710
711
711
This definition ensures that each column (row) of the matrix \( X\) lies on the
@@ -719,19 +719,19 @@ as simplex, but applied to each column (row).
719
719
720
720
### Absolute Jacobian Determinant for the Inverse Transform {-}
721
721
722
- The Jacobian determinant of the inverse transform for each column \( j \) in
723
- the matrix is given by the product of the diagonal entries \( J_ {i,i,j }\) of
722
+ The Jacobian determinant of the inverse transform for each column \( m \) in
723
+ the matrix is given by the product of the diagonal entries \( J_ {n, m }\) of
724
724
the lower-triangular Jacobian matrix. This determinant is calculated as:
725
725
726
726
$$
727
- \left| \det J_j \right| = \prod_{i =1}^{N-1} \left( z_{i, j } (1 - z_{i, j }) \left( 1 - \sum_{i '=1}^{i -1} X_{i'j } \right) \right).
727
+ \left| \det J_m \right| = \prod_{n =1}^{N-1} \left( z_{n, m } (1 - z_{n, m }) \left( 1 - \sum_{n '=1}^{n -1} X_{n', m } \right) \right).
728
728
$$
729
729
730
730
Thus, the overall Jacobian determinant for the entire ` column_stochastic_matrix ` and ` row_stochastic_matrix `
731
731
is the product of the determinants for each column (row):
732
732
733
733
$$
734
- \left| \det J \right| = \prod_{j =1}^{M} \left| \det J_j \right|.
734
+ \left| \det J \right| = \prod_{m =1}^{M} \left| \det J_m \right|.
735
735
$$
736
736
737
737
### Transform for Stochastic Matrix {-}
0 commit comments