@@ -159,29 +159,44 @@ For a description of argument and return types, see section
159
159
160
160
### Probability density function
161
161
162
- If $\alpha \in \mathbb{R}^+$, $\tau \in \mathbb{R}^+$, $\beta \in [ 0, 1] $,
162
+ If $\alpha \in \mathbb{R}^+$, $\tau \in \mathbb{R}^+$, $\beta \in ( 0, 1) $,
163
163
$\delta \in \mathbb{R}$, $s_ {\delta} \in \mathbb{R}^{\geq 0}$, $s_ {\beta} \in [ 0, 1)$, and
164
164
$s_ {\tau} \in \mathbb{R}^{\geq 0}$ then for $y > \tau$,
165
165
166
- \begin{eqnarray* }
167
- \text{Wiener}(y|\alpha, \tau, \beta, \delta, s_ {\delta}, s_ {\beta}, s_ {\tau})
168
-
169
- &=& \frac{1}{s_ {\tau}}
170
- \int_ {\tau}^{\tau + s_ {\tau}} \frac{1}{s_ {\beta}}\int_ {\beta -0.5s_ {\beta}}^{\beta + 0.5s_ {\beta}}
171
- M \times p_3(y-\tau|a,\delta,\omega) \ d\omega \ d\tau,
172
- \end{eqnarray* }
173
- where $M$ and $p_3()$ are defined, by using $t:=y-\tau$, as
174
- \begin{eqnarray* }
175
- M := \frac{1}{\sqrt{1+s^2_ {\delta} t}}
176
- \mathbb{e}^{a\delta\omega+\frac{\delta^2t}{2}+\frac{s^2_ {\delta} a^2
177
- \omega^2-2a\delta\omega-\delta^2t}{2(1+s^2_ {\delta}t)}} \text{ and} \\ p_3(t|a,\delta,\beta) :=
178
- \frac{1}{a^2} \mathbb{e}^{-a \delta \beta -\frac{\delta^2t}{2}} f(\frac{t}{a^2}|0,1,\beta), \end{eqnarray* }
179
- where $f(t^* =\frac{t}{a^2}|0,1,\beta)$ has two forms
180
- \begin{eqnarray* }
181
- f_l(t^* |0,1,\beta) = \sum_ {k=1}^{\infty} k\pi \mathbb{e}^{-\frac{k^2\pi^2t^* }{2}}
182
- \sin{(k \pi \beta)}\text{ and} \\
183
- f_s(t^* |0,1,\beta) = \sum_ {k=-\infty}^{\infty} \frac{1}{\sqrt{2\pi (t^* )^3}}
184
- (\beta+2k) \mathbb{e}^{-\frac{(\beta+2k)^2}{2t^* }}, \end{eqnarray* }
166
+
167
+ \begin{equation* }
168
+ \begin{split}
169
+ &\text{Wiener}(y\mid \alpha,\tau,\beta,\delta,s_ {\delta},s_ {\beta},s_ {\tau}) =
170
+ \\
171
+ &\frac{1}{s_ {\tau}}\int_ {\tau}^{\tau+s_ {\tau}}\frac{1}{s_ {\beta}}\int_ {\beta-\frac{1}{2}s_ {\beta}}^{\beta+\frac{1}{2}s_ {\beta}}\int_ {-\infty}^{\infty} p_3(y-{\tau_0}\mid \alpha,\nu,\omega)
172
+ \\
173
+ &\times \frac{1}{\sqrt{2\pi s_ {\delta}^2}}\exp\Bigl(-\frac{(\nu-\delta)^2}{2s_ {\delta}^2}\Bigr) \, d\nu \, d\omega \, d{\tau_0}=
174
+ \\
175
+ &\frac{1}{s_ {\tau}}\int_ {\tau}^{\tau+s_ {\tau}}\frac{1}{s_ {\beta}}\int_ {\beta-\frac{1}{2}s_ {\beta}}^{\beta+\frac{1}{2}s_ {\beta}} M\times p_3(y-{\tau_0}\mid \alpha,\nu,\omega) \, d\omega \, d{\tau_0},
176
+ \end{split}
177
+ \end{equation* }
178
+
179
+ where $p()$ denotes the density function, and $M$ and $p_3()$ are defined, by using $t:=y-{\tau_0}$, as
180
+
181
+ \begin{equation* }
182
+ M \coloneqq \frac{1}{\sqrt{1+s_ {\delta}^2t}}\exp\Bigl(\alpha{\delta}\omega+\frac{\delta^2t}{2}+\frac{s_ {\delta}^2\alpha^2\omega^2-2\alpha{\delta}\omega-\delta^2t}{2(1+s_ {\delta}^2t)}\Bigr)\text{ and}
183
+ \end{equation* }
184
+
185
+ \begin{equation* }
186
+ p_3(t\mid \alpha,\delta,\beta) \coloneqq \frac{1}{\alpha^2}\exp\Bigl(-\alpha\delta\beta-\frac{\delta^2t}{2}\Bigr)f(\frac{t}{\alpha^2}\mid 0,1,\beta),
187
+ \end{equation* }
188
+
189
+ where $f(t^* =\frac{t}{\alpha^2}\mid0,1,\beta)$ can be specified in two ways:
190
+
191
+ \begin{equation* }
192
+ f_l(t^* \mid 0,1,\beta) = \sum_ {k=1}^\infty k\pi \exp\Bigl(-\frac{k^2\pi^2t^* }{2}\Bigr)\sin(k\pi \beta)\text{ and}
193
+ \end{equation* }
194
+
195
+ \begin{equation* }
196
+ f_s(t^* \mid0,1,\beta) = \sum_ {k=-\infty}^\infty \frac{1}{\sqrt{2\pi(t^* )^3}}(\beta+2k) \exp\Bigl(-\frac{(\beta+2k)^2}{2t^* }\Bigr).
197
+ \end{equation* }
198
+
199
+ Which of these is used in the computations depends on which expression requires the smaller number of components $k$ to guarantee a pre-specified precision
185
200
186
201
In the case where $s_ {\delta}$, $s_ {\beta}$, and $s_ {\tau}$ are all $0$, this simplifies to
187
202
\begin{equation* }
0 commit comments