diff --git a/src/Epp.tex b/src/Epp.tex index 13f06e7..f94673d 100644 --- a/src/Epp.tex +++ b/src/Epp.tex @@ -2236,7 +2236,8 @@ \subsubsection{Exercise 12} \hline T & F & F & F \\ \hline F & T & T & T \\ \hline F & F & T & F \\ -\hline \end{array} +\hline +\end{array} $$ \end{proof} @@ -2417,7 +2418,8 @@ \subsubsection{Exercise 20} \hline F & F & F & F \\ \hline -\end{array} $$ +\end{array} +$$ $p \wedge \false$ and $p \vee \false$ are not logically equivalent. \end{proof} @@ -2863,7 +2865,8 @@ \subsubsection{Exercise 45} (b) It is not the case that both Bob and Ann are both math and computer science majors, but it is the case that Ann is a math major and Bob is both a math and computer science major. -\begin{proof} Define +\begin{proof} +Define \begin{enumerate} \item $p$: Bob is a math major. \item $q$: Bob is a CS major. @@ -2990,7 +2993,8 @@ \subsubsection{Exercise 46} \subsubsection{Exercise 47} In logic and in standard English, a double negative is equivalent to a positive.There is one fairly common English usage in which a “double positive” is equivalent to a negative. What is it? Can you think of others? -\begin{proof} There is a famous story about a philosopher who once gave a talk in which he observed that whereas in English and many other languages a double negative is equivalent to a positive, there is no language in which a double positive is equivalent to a negative. To this, another philosopher, Sidney +\begin{proof} +There is a famous story about a philosopher who once gave a talk in which he observed that whereas in English and many other languages a double negative is equivalent to a positive, there is no language in which a double positive is equivalent to a negative. To this, another philosopher, Sidney Morgenbesser, responded sarcastically, “Yeah, yeah.” {\it [Strictly speaking, sarcasm functions like negation. When spoken sarcastically, the words “Yeah, yeah” are not a true double positive; they just mean “no.”]} @@ -3071,8 +3075,8 @@ \subsubsection{Exercise 52} \subsubsection{Exercise 53} $\sim(({\sim p} \wedge q) \vee ({\sim p} \wedge {\sim q})) \vee (p \wedge q) \equiv p$ -\begin{proof} $\sim(({\sim p} \wedge q) \vee ({\sim p} \wedge {\sim q})) \vee (p -\wedge q)$ +\begin{proof} +$\sim(({\sim p} \wedge q) \vee ({\sim p} \wedge {\sim q})) \vee (p \wedge q)$ \begin{tabular}{rcll} & $\equiv$ & $\sim({\sim p} \wedge (q \vee {\sim q})) \vee @@ -3760,14 +3764,20 @@ \subsubsection{Exercise 28} \subsubsection{Exercise 29} $p \to (q \vee r) \equiv (p \wedge {\sim q}) \to r$ -\begin{proof} The tautology is $(p \to (q \vee r)) \bic ((p \wedge {\sim q}) \to -r)$. $$ \begin{array}{|ccc|c|c|c|c|c|c|} \hline p & q & r & q \vee r & p \wedge +\begin{proof} +The tautology is $(p \to (q \vee r)) \bic ((p \wedge {\sim q}) \to r)$. +$$ +\begin{array}{|ccc|c|c|c|c|c|c|} +\hline p & q & r & q \vee r & p \wedge {\sim q} & p \to (q \vee r) & p \wedge {\sim q} \to r & (p \to (q \vee r)) \bic ((p \wedge {\sim q}) \to r) \\ \hline T & T & T & T & F & T & T & T \\ \hline T & T & F & T & F & T & T & T \\ \hline T & F & T & T & T & T & T & T \\ \hline T & F & F & F & T & F & F & T \\ \hline F & T & T & T & F & T & T & T \\ \hline F & T & F & T & F & T & T & T \\ \hline F & F & T & T & F & T & T & T \\ \hline F -& F & F & F & F & T & T & T \\ \hline \end{array} $$ \end{proof} +& F & F & F & F & T & T & T \\ \hline +\end{array} +$$ +\end{proof} \subsubsection{Exercise 30} $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ @@ -4400,7 +4410,9 @@ \subsubsection{Exercise 13} $\therefore {\sim p}$ -\begin{proof} $$ \begin{array}{|cc|c|c|c|} +\begin{proof} +$$ +\begin{array}{|cc|c|c|c|} \hline & & \text{premise} & \text{premise} & \text{conclusion} \\ \hline p & q & p \to q & {\sim q} & {\sim p} \\ \hline @@ -4628,7 +4640,8 @@ \subsubsection{Exercise 22} $\therefore$ Tom is not on team A or Hua is not on team B. -\begin{proof} Let $p$ represent “Tom is on team A” and $q$ represent “Hua is on team B.” Then the argument has the form +\begin{proof} +Let $p$ represent “Tom is on team A” and $q$ represent “Hua is on team B.” Then the argument has the form \begin{center} ${\sim p} \to q$ \\ @@ -5111,9 +5124,10 @@ \subsubsection{Exercise 42} {\bf f.} $\therefore t$ -\begin{proof} \begin{tabular}{rrll} -(1) & & $q \to r$ & by premise (d) \\ -& & ${\sim r}$ & by premise (b) \\ +\begin{proof} +\begin{tabular}{rrll} +(1) & & $q \to r$ & by premise (b) \\ +& & ${\sim r}$ & by premise (d) \\ & $\therefore$ & ${\sim q}$ & by modus tollens \\ (2) & & ${\sim q}$ & by (1) \\ & & $p \vee q$ & by premise (a) \\ @@ -5122,7 +5136,7 @@ \subsubsection{Exercise 42} & & ${\sim q} \to u \wedge s$ & by premise (e) \\ & $\therefore$ & $u \wedge s$ & by modus ponens \\ (4) & & $u \wedge s$ & by (3) \\ -& $\therefore$ & $ $ & by specialization \\ +& $\therefore$ & $s$ & by specialization \\ (5) & & $p$ & by (2) \\ & & $s$ & by (4) \\ & $\therefore$ & $p \wedge s$ & by conjunction \\ (6) & & $p \wedge s$ & by (5) \\ @@ -5201,7 +5215,7 @@ \subsubsection{Exercise 44} & $\therefore$ & ${\sim p} \wedge r$ & by conjunction \\ (7) & & ${\sim p} \wedge r$ & by (6) \\ & & ${\sim p} \wedge r \to u$ & by premise (f) \\ -& $\therefore$ & $ $ & by modus ponens \\ +& $\therefore$ & $u$ & by modus ponens \\ (8) & & $u$ & by (7) \\ & & $w$ & by (2) \\ & $\therefore$ & $u \wedge w$ & by conjunction \\ @@ -5945,7 +5959,8 @@ \subsubsection{Exercise 33} \equiv & {\sim (P \wedge Q)} | {\sim (P \wedge Q)} & \text{\color{cyan}by definition of Sheffer stroke} \\ \equiv & {\sim ({\sim (P \wedge Q)} \wedge {\sim (P \wedge Q)})} & \text{\color{cyan}by definition of Sheffer stroke} \\ \equiv & (P \wedge Q) \vee (P \wedge Q) & \text{\color{cyan}by De Morgan laws} \\ -\equiv & P \wedge Q & \text{\color{cyan}by idempotent law} \\ \end{array} +\equiv & P \wedge Q & \text{\color{cyan}by idempotent law} +\end{array} $$ \end{proof} @@ -5975,7 +5990,8 @@ \subsubsection{Exercise 34} \begin{array}{cll} \equiv & {\sim(P \vee P)} & \text{\color{cyan}by definition of Peirce arrow} \\ \equiv & {\sim P} \wedge {\sim P} & \text{\color{cyan}by De Morgan laws} \\ -\equiv & {\sim P} & \text{\color{cyan}by idempotent law} \\ \end{array} +\equiv & {\sim P} & \text{\color{cyan}by idempotent law} +\end{array} $$ \end{proof} @@ -6311,7 +6327,8 @@ \subsubsection{Exercise 23} \subsubsection{Exercise 24} $-67$ -\begin{proof} $|-67|_\base{10} = 67_\base{10} = 64 + 2 + 1 = 01000011_\base{2} \to$ flip the bits $\to 10111100_\base{2} \to$ add 1 $\to 10111101_\base{2}$. +\begin{proof} +$|-67|_\base{10} = 67_\base{10} = 64 + 2 + 1 = 01000011_\base{2} \to$ flip the bits $\to 10111100_\base{2} \to$ add 1 $\to 10111101_\base{2}$. \end{proof} \subsubsection{Exercise 25} @@ -13099,7 +13116,7 @@ \subsubsection{Exercise 30} \end{proof} (b) -Use the$ $mod$ $notation to rewrite the result of part (a). +Use the $mod$ notation to rewrite the result of part (a). \begin{proof} For any integer $n$, $n(n+1) = 0 \mod 3$ or $n(n+1) = 2 \mod 3$. @@ -21279,7 +21296,29 @@ \subsubsection{Exercise 24} if one starts from person \#1 and goes repeatedly around the circle successively eliminating every second person, eventually only person \#$(2m + 1)$ will remain. \begin{proof} -{\it ???} +We observe that after eliminating $m$ people (every second person, +starting from \#1), we will have removed the people numbered +$\#2, \#4, \ldots,\#(2m)$ leaving person \#$(2m+1)$ next in line. + +We also know that: +\begin{align*} + 2^n+m &< 2^{n+1} \\ + m &< 2^n \\ + m+1 &\le 2^n \\ + 2m+1 &\le 2^n+m +\end{align*} + +In other words, since $2m+1 \in [1,r]$, the elimination never loops +through the circle more than once; it terminates within the first +traversal. This means we don’t need to worry about adjusting for shifts +caused by previously eliminated people in a second pass. + +After eliminating $m$ people, there are $2^n$ people remaining. +By part (b), when $2^n$ people remain in the circle and we start from +the current person — in this case, person \#$(2m + 1)$ — the last +remaining person will be that same person. + +Therefore, the last remaining person is \#$(2m + 1)$, as required. \end{proof} \subsubsection{Exercise 25}