Skip to content

Commit 1557ac6

Browse files
authored
Merge pull request #30 from tenick/solve/5.4_exercise24.c
add proof for 5.4.24.c, formatting and minor fixes
2 parents 899248d + fe76b7a commit 1557ac6

File tree

1 file changed

+60
-21
lines changed

1 file changed

+60
-21
lines changed

src/Epp.tex

Lines changed: 60 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -2236,7 +2236,8 @@ \subsubsection{Exercise 12}
22362236
\hline T & F & F & F \\
22372237
\hline F & T & T & T \\
22382238
\hline F & F & T & F \\
2239-
\hline \end{array}
2239+
\hline
2240+
\end{array}
22402241
$$
22412242
\end{proof}
22422243

@@ -2417,7 +2418,8 @@ \subsubsection{Exercise 20}
24172418
\hline
24182419
F & F & F & F \\
24192420
\hline
2420-
\end{array} $$
2421+
\end{array}
2422+
$$
24212423

24222424
$p \wedge \false$ and $p \vee \false$ are not logically equivalent.
24232425
\end{proof}
@@ -2863,7 +2865,8 @@ \subsubsection{Exercise 45}
28632865

28642866
(b) It is not the case that both Bob and Ann are both math and computer science majors, but it is the case that Ann is a math major and Bob is both a math and computer science major.
28652867

2866-
\begin{proof} Define
2868+
\begin{proof}
2869+
Define
28672870
\begin{enumerate}
28682871
\item $p$: Bob is a math major.
28692872
\item $q$: Bob is a CS major.
@@ -2990,7 +2993,8 @@ \subsubsection{Exercise 46}
29902993
\subsubsection{Exercise 47}
29912994
In logic and in standard English, a double negative is equivalent to a positive.There is one fairly common English usage in which a “double positive” is equivalent to a negative. What is it? Can you think of others?
29922995

2993-
\begin{proof} There is a famous story about a philosopher who once gave a talk in which he observed that whereas in English and many other languages a double negative is equivalent to a positive, there is no language in which a double positive is equivalent to a negative. To this, another philosopher, Sidney
2996+
\begin{proof}
2997+
There is a famous story about a philosopher who once gave a talk in which he observed that whereas in English and many other languages a double negative is equivalent to a positive, there is no language in which a double positive is equivalent to a negative. To this, another philosopher, Sidney
29942998
Morgenbesser, responded sarcastically, “Yeah, yeah.”
29952999

29963000
{\it [Strictly speaking, sarcasm functions like negation. When spoken sarcastically, the words “Yeah, yeah” are not a true double positive; they just mean “no.”]}
@@ -3071,8 +3075,8 @@ \subsubsection{Exercise 52}
30713075
\subsubsection{Exercise 53} $\sim(({\sim p} \wedge q) \vee ({\sim p} \wedge {\sim
30723076
q})) \vee (p \wedge q) \equiv p$
30733077

3074-
\begin{proof} $\sim(({\sim p} \wedge q) \vee ({\sim p} \wedge {\sim q})) \vee (p
3075-
\wedge q)$
3078+
\begin{proof}
3079+
$\sim(({\sim p} \wedge q) \vee ({\sim p} \wedge {\sim q})) \vee (p \wedge q)$
30763080

30773081
\begin{tabular}{rcll}
30783082
& $\equiv$ & $\sim({\sim p} \wedge (q \vee {\sim q})) \vee
@@ -3760,14 +3764,20 @@ \subsubsection{Exercise 28}
37603764

37613765
\subsubsection{Exercise 29}
37623766
$p \to (q \vee r) \equiv (p \wedge {\sim q}) \to r$
3763-
\begin{proof} The tautology is $(p \to (q \vee r)) \bic ((p \wedge {\sim q}) \to
3764-
r)$. $$ \begin{array}{|ccc|c|c|c|c|c|c|} \hline p & q & r & q \vee r & p \wedge
3767+
\begin{proof}
3768+
The tautology is $(p \to (q \vee r)) \bic ((p \wedge {\sim q}) \to r)$.
3769+
$$
3770+
\begin{array}{|ccc|c|c|c|c|c|c|}
3771+
\hline p & q & r & q \vee r & p \wedge
37653772
{\sim q} & p \to (q \vee r) & p \wedge {\sim q} \to r & (p \to (q \vee r)) \bic
37663773
((p \wedge {\sim q}) \to r) \\ \hline T & T & T & T & F & T & T & T \\ \hline T
37673774
& T & F & T & F & T & T & T \\ \hline T & F & T & T & T & T & T & T \\ \hline T
37683775
& F & F & F & T & F & F & T \\ \hline F & T & T & T & F & T & T & T \\ \hline F
37693776
& T & F & T & F & T & T & T \\ \hline F & F & T & T & F & T & T & T \\ \hline F
3770-
& F & F & F & F & T & T & T \\ \hline \end{array} $$ \end{proof}
3777+
& F & F & F & F & T & T & T \\ \hline
3778+
\end{array}
3779+
$$
3780+
\end{proof}
37713781

37723782
\subsubsection{Exercise 30}
37733783
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
@@ -4400,7 +4410,9 @@ \subsubsection{Exercise 13}
44004410

44014411
$\therefore {\sim p}$
44024412

4403-
\begin{proof} $$ \begin{array}{|cc|c|c|c|}
4413+
\begin{proof}
4414+
$$
4415+
\begin{array}{|cc|c|c|c|}
44044416
\hline
44054417
& & \text{premise} & \text{premise} & \text{conclusion} \\ \hline p & q & p \to q & {\sim q} & {\sim p} \\
44064418
\hline
@@ -4628,7 +4640,8 @@ \subsubsection{Exercise 22}
46284640

46294641
$\therefore$ Tom is not on team A or Hua is not on team B.
46304642

4631-
\begin{proof} Let $p$ represent “Tom is on team A” and $q$ represent “Hua is on team B.” Then the argument has the form
4643+
\begin{proof}
4644+
Let $p$ represent “Tom is on team A” and $q$ represent “Hua is on team B.” Then the argument has the form
46324645

46334646
\begin{center}
46344647
${\sim p} \to q$ \\
@@ -5111,9 +5124,10 @@ \subsubsection{Exercise 42}
51115124

51125125
{\bf f.} $\therefore t$
51135126

5114-
\begin{proof} \begin{tabular}{rrll}
5115-
(1) & & $q \to r$ & by premise (d) \\
5116-
& & ${\sim r}$ & by premise (b) \\
5127+
\begin{proof}
5128+
\begin{tabular}{rrll}
5129+
(1) & & $q \to r$ & by premise (b) \\
5130+
& & ${\sim r}$ & by premise (d) \\
51175131
& $\therefore$ & ${\sim q}$ & by modus tollens \\
51185132
(2) & & ${\sim q}$ & by (1) \\
51195133
& & $p \vee q$ & by premise (a) \\
@@ -5122,7 +5136,7 @@ \subsubsection{Exercise 42}
51225136
& & ${\sim q} \to u \wedge s$ & by premise (e) \\
51235137
& $\therefore$ & $u \wedge s$ & by modus ponens \\
51245138
(4) & & $u \wedge s$ & by (3) \\
5125-
& $\therefore$ & $ $ & by specialization \\
5139+
& $\therefore$ & $s$ & by specialization \\
51265140
(5) & & $p$ & by (2) \\ & & $s$ & by (4) \\
51275141
& $\therefore$ & $p \wedge s$ & by conjunction \\
51285142
(6) & & $p \wedge s$ & by (5) \\
@@ -5201,7 +5215,7 @@ \subsubsection{Exercise 44}
52015215
& $\therefore$ & ${\sim p} \wedge r$ & by conjunction \\
52025216
(7) & & ${\sim p} \wedge r$ & by (6) \\
52035217
& & ${\sim p} \wedge r \to u$ & by premise (f) \\
5204-
& $\therefore$ & $ $ & by modus ponens \\
5218+
& $\therefore$ & $u$ & by modus ponens \\
52055219
(8) & & $u$ & by (7) \\
52065220
& & $w$ & by (2) \\
52075221
& $\therefore$ & $u \wedge w$ & by conjunction \\
@@ -5945,7 +5959,8 @@ \subsubsection{Exercise 33}
59455959
\equiv & {\sim (P \wedge Q)} | {\sim (P \wedge Q)} & \text{\color{cyan}by definition of Sheffer stroke} \\
59465960
\equiv & {\sim ({\sim (P \wedge Q)} \wedge {\sim (P \wedge Q)})} & \text{\color{cyan}by definition of Sheffer stroke} \\
59475961
\equiv & (P \wedge Q) \vee (P \wedge Q) & \text{\color{cyan}by De Morgan laws} \\
5948-
\equiv & P \wedge Q & \text{\color{cyan}by idempotent law} \\ \end{array}
5962+
\equiv & P \wedge Q & \text{\color{cyan}by idempotent law}
5963+
\end{array}
59495964
$$
59505965
\end{proof}
59515966

@@ -5975,7 +5990,8 @@ \subsubsection{Exercise 34}
59755990
\begin{array}{cll}
59765991
\equiv & {\sim(P \vee P)} & \text{\color{cyan}by definition of Peirce arrow} \\
59775992
\equiv & {\sim P} \wedge {\sim P} & \text{\color{cyan}by De Morgan laws} \\
5978-
\equiv & {\sim P} & \text{\color{cyan}by idempotent law} \\ \end{array}
5993+
\equiv & {\sim P} & \text{\color{cyan}by idempotent law}
5994+
\end{array}
59795995
$$
59805996
\end{proof}
59815997

@@ -6311,7 +6327,8 @@ \subsubsection{Exercise 23}
63116327
\subsubsection{Exercise 24}
63126328
$-67$
63136329

6314-
\begin{proof} $|-67|_\base{10} = 67_\base{10} = 64 + 2 + 1 = 01000011_\base{2} \to$ flip the bits $\to 10111100_\base{2} \to$ add 1 $\to 10111101_\base{2}$.
6330+
\begin{proof}
6331+
$|-67|_\base{10} = 67_\base{10} = 64 + 2 + 1 = 01000011_\base{2} \to$ flip the bits $\to 10111100_\base{2} \to$ add 1 $\to 10111101_\base{2}$.
63156332
\end{proof}
63166333

63176334
\subsubsection{Exercise 25}
@@ -13099,7 +13116,7 @@ \subsubsection{Exercise 30}
1309913116
\end{proof}
1310013117

1310113118
(b)
13102-
Use the$ $mod$ $notation to rewrite the result of part (a).
13119+
Use the $mod$ notation to rewrite the result of part (a).
1310313120

1310413121
\begin{proof}
1310513122
For any integer $n$, $n(n+1) = 0 \mod 3$ or $n(n+1) = 2 \mod 3$.
@@ -21279,7 +21296,29 @@ \subsubsection{Exercise 24}
2127921296
if one starts from person \#1 and goes repeatedly around the circle successively eliminating every second person, eventually only person \#$(2m + 1)$ will remain.
2128021297

2128121298
\begin{proof}
21282-
{\it ???}
21299+
We observe that after eliminating $m$ people (every second person,
21300+
starting from \#1), we will have removed the people numbered
21301+
$\#2, \#4, \ldots,\#(2m)$ leaving person \#$(2m+1)$ next in line.
21302+
21303+
We also know that:
21304+
\begin{align*}
21305+
2^n+m &< 2^{n+1} \\
21306+
m &< 2^n \\
21307+
m+1 &\le 2^n \\
21308+
2m+1 &\le 2^n+m
21309+
\end{align*}
21310+
21311+
In other words, since $2m+1 \in [1,r]$, the elimination never loops
21312+
through the circle more than once; it terminates within the first
21313+
traversal. This means we don’t need to worry about adjusting for shifts
21314+
caused by previously eliminated people in a second pass.
21315+
21316+
After eliminating $m$ people, there are $2^n$ people remaining.
21317+
By part (b), when $2^n$ people remain in the circle and we start from
21318+
the current person — in this case, person \#$(2m + 1)$ — the last
21319+
remaining person will be that same person.
21320+
21321+
Therefore, the last remaining person is \#$(2m + 1)$, as required.
2128321322
\end{proof}
2128421323

2128521324
\subsubsection{Exercise 25}

0 commit comments

Comments
 (0)