|
| 1 | +# Task. Given 𝑛 points on a plane, find the smallest distance between a pair of two (different) points. Recall |
| 2 | +# that the distance between points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is equal to √︀((𝑥1 − 𝑥2)² + (𝑦1 − 𝑦2)²) |
| 3 | + |
| 4 | +import math |
| 5 | +def dist(p1, p2): |
| 6 | + return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) |
| 7 | + |
| 8 | +def closest_split_pair(p_x, p_y, delta, best_pair): |
| 9 | + ln_x = len(p_x) # store length - quicker |
| 10 | + mx_x = p_x[ln_x // 2][0] # select midpoint on x-sorted array |
| 11 | + |
| 12 | + # Create a subarray of points not further than delta from midpoint on x-sorted array |
| 13 | + s_y = [x for x in p_y if mx_x - delta <= x[0] <= mx_x + delta] |
| 14 | + |
| 15 | + best = delta # assign delta value to best |
| 16 | + ln_y = len(s_y) # store length of subarray for quickness |
| 17 | + for i in range(ln_y - 1): |
| 18 | + for j in range(i+1, min(i + 5, ln_y)): # We have to check only next 5 points; |
| 19 | + p, q = s_y[i], s_y[j] |
| 20 | + dst = dist(p, q) |
| 21 | + if dst < best: |
| 22 | + best_pair = p, q |
| 23 | + best = dst |
| 24 | + return best_pair[0], best_pair[1], best |
| 25 | + |
| 26 | + |
| 27 | +def brute(ax): |
| 28 | + mi = dist(ax[0], ax[1]) |
| 29 | + p1 = ax[0] |
| 30 | + p2 = ax[1] |
| 31 | + ln_ax = len(ax) |
| 32 | + if ln_ax == 2: |
| 33 | + return p1, p2, mi |
| 34 | + for i in range(ln_ax-1): |
| 35 | + for j in range(i + 1, ln_ax): |
| 36 | + if i != 0 and j != 1: |
| 37 | + d = dist(ax[i], ax[j]) |
| 38 | + if d < mi: # Update min_dist and points |
| 39 | + mi = d |
| 40 | + p1, p2 = ax[i], ax[j] |
| 41 | + return p1, p2, mi |
| 42 | + |
| 43 | + |
| 44 | +def closest_pair(ax, ay): |
| 45 | + ln_ax = len(ax) # It's quicker to assign variable |
| 46 | + if ln_ax <= 3: |
| 47 | + return brute(ax) # A call to bruteforce comparison |
| 48 | + mid = ln_ax // 2 # Division without remainder, need int |
| 49 | + Qx = ax[:mid] # Two-part split |
| 50 | + Rx = ax[mid:] |
| 51 | + |
| 52 | + midpoint = ax[mid][0] |
| 53 | + Qy = list() |
| 54 | + Ry = list() |
| 55 | + for x in ay: # split ay into 2 arrays using midpoint |
| 56 | + if x[0] < midpoint: |
| 57 | + Qy.append(x) |
| 58 | + else: |
| 59 | + Ry.append(x) |
| 60 | + # Call recursively both arrays after split |
| 61 | + (p1, q1, mi1) = closest_pair(Qx, Qy) |
| 62 | + (p2, q2, mi2) = closest_pair(Rx, Ry) |
| 63 | + |
| 64 | + # Determine smaller distance between points of 2 arrays |
| 65 | + if mi1 <= mi2: |
| 66 | + d = mi1 |
| 67 | + mn = (p1, q1) |
| 68 | + else: |
| 69 | + d = mi2 |
| 70 | + mn = (p2, q2) |
| 71 | + |
| 72 | + # Call function to account for points on the boundary |
| 73 | + (p3, q3, mi3) = closest_split_pair(ax, ay, d, mn) |
| 74 | + # Determine smallest distance for the array |
| 75 | + if d <= mi3: |
| 76 | + return mn[0], mn[1], d |
| 77 | + else: |
| 78 | + return p3, q3, mi3 |
| 79 | + |
| 80 | + |
| 81 | +def solution(a): |
| 82 | + ax = sorted(a, key=lambda x: x[0]) # Presorting x-wise O(nlogn) |
| 83 | + ay = sorted(a, key=lambda x: (x[1], x[0])) # Presorting y-wise then x-wise O(nlogn) |
| 84 | + p1, p2, mi = closest_pair(ax, ay) # Recursive D&C function |
| 85 | + return mi |
| 86 | + |
| 87 | + |
| 88 | +# Input |
| 89 | +points = list() |
| 90 | +n = int(input()) |
| 91 | +for i in range(n): |
| 92 | + points.append([int(i) for i in input().split()]) |
| 93 | + |
| 94 | +print(solution(points)) |
0 commit comments