|
| 1 | +// Problem Description: Strassens Algorithm in C Language for Matrix Multiplication |
| 2 | +#include<stdio.h> |
| 3 | +int main(){ |
| 4 | + int mat1[2][2], mat2[2][2], mat3[2][2], i, j; |
| 5 | + int a, b, c, d , e, f, g; |
| 6 | + |
| 7 | + printf("Enter the elements of first matrix:\n"); //Input elements for matrix 1 |
| 8 | + for(i = 0;i < 2; i++) |
| 9 | + { |
| 10 | + for(j = 0;j < 2; j++) |
| 11 | + { |
| 12 | + scanf("%d", &mat1[i][j]); |
| 13 | + } |
| 14 | + } |
| 15 | + |
| 16 | + printf("Enter the elements of second matrix:\n"); // Input elements for matrix 2 |
| 17 | + for(i = 0; i < 2; i++) |
| 18 | + { |
| 19 | + for(j = 0;j < 2; j++) |
| 20 | + { |
| 21 | + scanf("%d", &mat2[i][j]); |
| 22 | + } |
| 23 | + } |
| 24 | + //Displaying |
| 25 | + printf("The Matrix 1:\n"); //Displaying matrix 1 elements |
| 26 | + for(i = 0; i < 2; i++) |
| 27 | + { |
| 28 | + for(j = 0; j < 2; j++) |
| 29 | + { |
| 30 | + printf("%d\t", mat1[i][j]); |
| 31 | + } |
| 32 | + printf("\n"); |
| 33 | + } |
| 34 | + |
| 35 | + printf("The Matrix 2:\n"); //Displayimg matrix 2 elements |
| 36 | + for(i = 0;i < 2; i++) |
| 37 | + { |
| 38 | + for(j = 0;j < 2; j++) |
| 39 | + { |
| 40 | + printf("%d \t", mat2[i][j]); |
| 41 | + } |
| 42 | + printf("\n"); |
| 43 | + } |
| 44 | + |
| 45 | + //reduced eight times Time Complexity to Seven Times i.e T(N) = 7T(N/2) + O(N^2) |
| 46 | + |
| 47 | + // Compexity: before O(n^3) when used Standard Matrix Multiplication , now :O(n^2.808) when used Strassen's Algorithm |
| 48 | + |
| 49 | + //Now we can calculate the product of mat1[i][j] and mat2[i][j] with the following formulas: |
| 50 | + a= (mat1[0][0] + mat1[1][1]) * (mat2[0][0] + mat2[1][1]); |
| 51 | + b= (mat1[1][0] + mat1[1][1]) * mat2[0][0]; |
| 52 | + c= mat1[0][0] * (mat2[0][1] - mat2[1][1]); |
| 53 | + d= mat1[1][1] * (mat2[1][0] - mat2[0][0]); |
| 54 | + e= (mat1[0][0] + mat1[0][1]) * mat2[1][1]; |
| 55 | + f= (mat1[1][0] - mat1[0][0]) * (mat2[0][0]+mat2[0][1]); |
| 56 | + g= (mat1[0][1] - mat1[1][1]) * (mat2[1][0]+mat2[1][1]); |
| 57 | + //Now with a,b,c,d,e,f,g which are the submatrices of size N/2*N/2 |
| 58 | + |
| 59 | + //Calculate the elements of matrix 3, The resultant matrix mat3[i][j] |
| 60 | + mat3[0][0] = a + d- e + g; |
| 61 | + mat3[0][1] = c + e; |
| 62 | + mat3[1][0] = b + d; |
| 63 | + mat3[1][1] = a - b + c + f; |
| 64 | + |
| 65 | + printf("Strassen's algorithm : Matrix Multiplication\n"); //Resultant matrix after applying Strassen's Algo |
| 66 | + for(i = 0; i < 2 ; i++) |
| 67 | + { |
| 68 | + for(j = 0;j < 2; j++) |
| 69 | + { |
| 70 | + printf("%d\t", mat3[i][j]); //displaying resultant matrix |
| 71 | + } |
| 72 | + printf("\n"); |
| 73 | + } |
| 74 | + return 0; |
| 75 | +} |
0 commit comments