|
| 1 | +// Given a set of time intervals in any order, merge all overlapping intervals |
| 2 | +// into one and output the result which should have only mutually exclusive |
| 3 | +// intervals. Let the intervals be represented as pairs of integers for |
| 4 | +// simplicity. For example, let the given set of intervals be {{1,3}, {2,4}, |
| 5 | +// {5,7}, {6,8}}. The intervals {1,3} and {2,4} overlap with each other, so they |
| 6 | +// should be merged and become {1, 4}. Similarly, {5, 7} and {6, 8} should be |
| 7 | +// merged and become {5, 8}. |
| 8 | + |
| 9 | +// Write a function that produces the set of merged intervals for the given set |
| 10 | +// of intervals. |
| 11 | + |
| 12 | +#include <bits/stdc++.h> |
| 13 | +using namespace std; |
| 14 | +struct Interval |
| 15 | +{ |
| 16 | + int start, end; |
| 17 | +}; |
| 18 | + |
| 19 | +bool compare(Interval i1, Interval i2) { return (i1.start < i2.start); } |
| 20 | + |
| 21 | +void mergeIntervals(Interval arr[], int n) |
| 22 | +{ |
| 23 | + if (n <= 0) |
| 24 | + return; |
| 25 | + stack<Interval> s; |
| 26 | + sort(arr, arr + n, compare); |
| 27 | + s.push(arr[0]); |
| 28 | + |
| 29 | + for (int i = 1; i < n; i++) |
| 30 | + { |
| 31 | + Interval top = s.top(); |
| 32 | + |
| 33 | + if (top.end < arr[i].start) |
| 34 | + s.push(arr[i]); |
| 35 | + |
| 36 | + else if (top.end < arr[i].end) |
| 37 | + { |
| 38 | + top.end = arr[i].end; |
| 39 | + s.pop(); |
| 40 | + s.push(top); |
| 41 | + } |
| 42 | + } |
| 43 | + |
| 44 | + cout << "\n The Merged Intervals are: "; |
| 45 | + while (!s.empty()) |
| 46 | + { |
| 47 | + Interval t = s.top(); |
| 48 | + cout << "[" << t.start << "," << t.end << "] "; |
| 49 | + s.pop(); |
| 50 | + } |
| 51 | + return; |
| 52 | +} |
| 53 | + |
| 54 | +int main() |
| 55 | +{ |
| 56 | + Interval arr[] = {{1, 3}, {2, 4}, {5, 7}, {6, 8}}; |
| 57 | + int n = sizeof(arr) / sizeof(arr[0]); |
| 58 | + mergeIntervals(arr, n); |
| 59 | + return 0; |
| 60 | +} |
0 commit comments