|
| 1 | +//Link : https://www.interviewbit.com/problems/minimum-difference-subsets/ |
| 2 | +/* |
| 3 | +Problem Description |
| 4 | +
|
| 5 | +Given an integer array A containing N integers. |
| 6 | +
|
| 7 | +You need to divide the array A into two subsets S1 and S2 such that the absolute difference between their sums is minimum. |
| 8 | +
|
| 9 | +Find and return this minimum possible absolute difference. |
| 10 | +
|
| 11 | +NOTE: |
| 12 | +
|
| 13 | +Subsets can contain elements from A in any order (not necessary to be contiguous). |
| 14 | +Each element of A should belong to any one subset S1 or S2, not both. |
| 15 | +It may be possible that one subset remains empty. |
| 16 | +
|
| 17 | +
|
| 18 | +Problem Constraints |
| 19 | +1 <= N <= 100 |
| 20 | +
|
| 21 | +1 <= A[i] <= 100 |
| 22 | +
|
| 23 | +
|
| 24 | +
|
| 25 | +Input Format |
| 26 | +First and only argument is an integer array A. |
| 27 | +
|
| 28 | +
|
| 29 | +
|
| 30 | +Output Format |
| 31 | +Return an integer denoting the minimum possible difference among the sums of two subsets. |
| 32 | +
|
| 33 | +
|
| 34 | +
|
| 35 | +Example Input |
| 36 | +Input 1: |
| 37 | +
|
| 38 | + A = [1, 6, 11, 5] |
| 39 | +
|
| 40 | +
|
| 41 | +Example Output |
| 42 | +Output 1: |
| 43 | +
|
| 44 | + 1 |
| 45 | +
|
| 46 | +
|
| 47 | +Example Explanation |
| 48 | +Explanation 1: |
| 49 | +
|
| 50 | + Subset1 = {1, 5, 6}, sum of Subset1 = 12 |
| 51 | + Subset2 = {11}, sum of Subset2 = 11*/ |
| 52 | + |
| 53 | +int Solution::solve(vector<int> &A) { |
| 54 | + int sum = 0,N=A.size(); |
| 55 | + for (int i = 0; i < A.size(); i++) |
| 56 | + sum += A[i]; |
| 57 | + |
| 58 | + bool dp[N+1][sum+1]; |
| 59 | + |
| 60 | + for(int i=0;i<N+1;i++) |
| 61 | + { |
| 62 | + for(int j=0;j<sum+1;j++) |
| 63 | + { |
| 64 | + |
| 65 | + if(j==0) dp[i][j]= true; |
| 66 | + else if(i==0) dp[i][j]= false; |
| 67 | + |
| 68 | + else if(A[i-1] <= j) |
| 69 | + { |
| 70 | + dp[i][j] = dp[i-1][j-A[i-1]] || dp[i-1][j]; |
| 71 | + } |
| 72 | + else dp[i][j] = dp[i-1][j]; |
| 73 | + } |
| 74 | + } |
| 75 | + // Initialize difference of two sums. |
| 76 | + int diff = INT_MAX; |
| 77 | + |
| 78 | + // Find the largest j such that dp[n][j] |
| 79 | + // is true where j loops from sum/2 t0 0 |
| 80 | + for (int j=sum/2; j>=0; j--) |
| 81 | + { |
| 82 | + // Find the |
| 83 | + if (dp[N][j] == true) |
| 84 | + { |
| 85 | + diff = sum-2*j; |
| 86 | + break; |
| 87 | + } |
| 88 | + } |
| 89 | + return diff; |
| 90 | +} |
0 commit comments