Skip to content

Error in ModuleEigengenes: "invalid argument type" when using default parameters #400

@sunzhendong123

Description

@sunzhendong123

Important note to the person writing this issue
GitHub issues use the Markdown text language. If you are not familiar with Markdown, we strongly recommend consulting the Markdown style guide before writing your issue. It is easier for us to help you if your issue is properly formatted!

Describe the bug
When following the official documentation of hdWGCNA (using the recommended example data and code workflow), the ModuleEigengenes function throws an error when running the following code snippet:

packageVersion("hdWGCNA")
[1] ‘0.3.0’

seurat_obj <- ModuleEigengenes(
seurat_obj,
group.by.vars = "Sample"
)
Error in !CheckWGCNAName(seurat_obj, wgcna_name) : invalid argument type

Steps to reproduce
using the recommended example data and code workflow

# Put code in this box

setwd("~/Desktop/RStudio/单细胞")

# single-cell analysis package
library(Seurat)

# plotting and data science packages
library(tidyverse)
library(cowplot)
library(patchwork)

# co-expression network analysis packages:
library(WGCNA)
library(hdWGCNA)

# using the cowplot theme for ggplot
theme_set(theme_cowplot())

# set random seed for reproducibility
set.seed(12345)

# optionally enable multithreading
enableWGCNAThreads(nThreads = 8)

# load the Zhou et al snRNA-seq dataset
seurat_obj <- readRDS('示例数据/hdWGCNA/Zhou_2020_control.rds')


seurat_obj <- SeuratObject::UpdateSeuratObject(seurat_obj)


p <- DimPlot(seurat_obj, group.by='cell_type', label=TRUE) +
  umap_theme() + ggtitle('Zhou et al Control Cortex') + NoLegend()

p

seurat_obj <- SetupForWGCNA(
  seurat_obj,
  gene_select = "fraction", # the gene selection approach
  fraction = 0.05, # fraction of cells that a gene needs to be expressed in order to be included
  wgcna_name = "tutorial" # the name of the hdWGCNA experiment
)

# construct metacells  in each group
seurat_obj <- MetacellsByGroups(
  seurat_obj = seurat_obj,
  group.by = c("cell_type", "Sample"), # specify the columns in seurat_obj@meta.data to group by
  reduction = 'harmony', # select the dimensionality reduction to perform KNN on
  k = 25, # nearest-neighbors parameter
  max_shared = 10, # maximum number of shared cells between two metacells
  ident.group = 'cell_type' # set the Idents of the metacell seurat object
)

# normalize metacell expression matrix:
seurat_obj <- NormalizeMetacells(seurat_obj)

seurat_obj <- SetDatExpr(
  seurat_obj,
  group_name = "INH", # the name of the group of interest in the group.by column
  group.by='cell_type', # the metadata column containing the cell type info. This same column should have also been used in MetacellsByGroups
  assay = 'RNA', # using RNA assay
  layer = 'data' # using normalized data
)

# Test different soft powers:
seurat_obj <- TestSoftPowers(
  seurat_obj,
  networkType = 'signed' # you can also use "unsigned" or "signed hybrid"
)

# plot the results:
plot_list <- PlotSoftPowers(seurat_obj)

# assemble with patchwork
wrap_plots(plot_list, ncol=2)

power_table <- GetPowerTable(seurat_obj)
head(power_table)

# construct co-expression network:
seurat_obj <- ConstructNetwork(
  seurat_obj,
  tom_name = 'INH' # name of the topoligical overlap matrix written to disk
)

PlotDendrogram(seurat_obj, main='INH hdWGCNA Dendrogram')

TOM <- GetTOM(seurat_obj)

# need to run ScaleData first or else harmony throws an error:
#seurat_obj <- ScaleData(seurat_obj, features=VariableFeatures(seurat_obj))

# compute all MEs in the full single-cell dataset
seurat_obj <- ModuleEigengenes(
  seurat_obj,
  group.by.vars="Sample"
)


**R session info**
> packageVersion("hdWGCNA")
[1] ‘0.3.0’
> R.version
               _                           
platform       aarch64-apple-darwin20      
arch           aarch64                     
os             darwin20                    
system         aarch64, darwin20           
status                                     
major          4                           
minor          5.1                         
year           2025                        
month          06                          
day            13                          
svn rev        88306                       
language       R                           
version.string R version 4.5.1 (2025-06-13)
nickname       Great Square Root    

**Screenshots**
If applicable, add screenshots to help explain your problem.

**More than one problem?** 
hdWGCNA has been updated to version 0.4 in the documentation, but the installable R package remains at version 0.3. Could you please release the new version of the R package?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions