Skip to content

Commit ad3ac49

Browse files
authored
Implement GaussianNB (#27)
* feat: Add GaussianNB
1 parent 72e9f82 commit ad3ac49

File tree

2 files changed

+259
-0
lines changed

2 files changed

+259
-0
lines changed

src/naive_bayes/gaussian.rs

Lines changed: 257 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,257 @@
1+
use crate::error::Failed;
2+
use crate::linalg::row_iter;
3+
use crate::linalg::BaseVector;
4+
use crate::linalg::Matrix;
5+
use crate::math::num::RealNumber;
6+
use crate::math::vector::RealNumberVector;
7+
use crate::naive_bayes::{BaseNaiveBayes, NBDistribution};
8+
use serde::{Deserialize, Serialize};
9+
10+
/// Naive Bayes classifier for categorical features
11+
#[derive(Serialize, Deserialize, Debug, PartialEq)]
12+
struct GaussianNBDistribution<T: RealNumber> {
13+
/// class labels known to the classifier
14+
class_labels: Vec<T>,
15+
/// probability of each class.
16+
class_priors: Vec<T>,
17+
/// variance of each feature per class
18+
sigma: Vec<Vec<T>>,
19+
/// mean of each feature per class
20+
theta: Vec<Vec<T>>,
21+
}
22+
23+
impl<T: RealNumber, M: Matrix<T>> NBDistribution<T, M> for GaussianNBDistribution<T> {
24+
fn prior(&self, class_index: usize) -> T {
25+
if class_index >= self.class_labels.len() {
26+
T::zero()
27+
} else {
28+
self.class_priors[class_index]
29+
}
30+
}
31+
32+
fn log_likelihood(&self, class_index: usize, j: &M::RowVector) -> T {
33+
if class_index < self.class_labels.len() {
34+
let mut likelihood = T::zero();
35+
for feature in 0..j.len() {
36+
let value = j.get(feature);
37+
let mean = self.theta[class_index][feature];
38+
let variance = self.sigma[class_index][feature];
39+
likelihood += self.calculate_log_probability(value, mean, variance);
40+
}
41+
likelihood
42+
} else {
43+
T::zero()
44+
}
45+
}
46+
47+
fn classes(&self) -> &Vec<T> {
48+
&self.class_labels
49+
}
50+
}
51+
52+
/// `GaussianNB` parameters. Use `Default::default()` for default values.
53+
#[derive(Serialize, Deserialize, Debug, Default)]
54+
pub struct GaussianNBParameters<T: RealNumber> {
55+
/// Prior probabilities of the classes. If specified the priors are not adjusted according to the data
56+
pub priors: Option<Vec<T>>,
57+
}
58+
59+
impl<T: RealNumber> GaussianNBParameters<T> {
60+
/// Create GaussianNBParameters with specific paramaters.
61+
pub fn new(priors: Option<Vec<T>>) -> Self {
62+
Self { priors }
63+
}
64+
}
65+
66+
impl<T: RealNumber> GaussianNBDistribution<T> {
67+
/// Fits the distribution to a NxM matrix where N is number of samples and M is number of features.
68+
/// * `x` - training data.
69+
/// * `y` - vector with target values (classes) of length N.
70+
/// * `priors` - Optional vector with prior probabilities of the classes. If not defined,
71+
/// priors are adjusted according to the data.
72+
pub fn fit<M: Matrix<T>>(
73+
x: &M,
74+
y: &M::RowVector,
75+
priors: Option<Vec<T>>,
76+
) -> Result<Self, Failed> {
77+
let (n_samples, n_features) = x.shape();
78+
let y_samples = y.len();
79+
if y_samples != n_samples {
80+
return Err(Failed::fit(&format!(
81+
"Size of x should equal size of y; |x|=[{}], |y|=[{}]",
82+
n_samples, y_samples
83+
)));
84+
}
85+
86+
if n_samples == 0 {
87+
return Err(Failed::fit(&format!(
88+
"Size of x and y should greater than 0; |x|=[{}]",
89+
n_samples
90+
)));
91+
}
92+
let y = y.to_vec();
93+
let (class_labels, indices) = <Vec<T> as RealNumberVector<T>>::unique_with_indices(&y);
94+
95+
let mut class_count = vec![T::zero(); class_labels.len()];
96+
97+
let mut subdataset: Vec<Vec<Vec<T>>> = vec![vec![]; class_labels.len()];
98+
99+
for (row, class_index) in row_iter(x).zip(indices.iter()) {
100+
class_count[*class_index] += T::one();
101+
subdataset[*class_index].push(row);
102+
}
103+
104+
let class_priors = if let Some(class_priors) = priors {
105+
if class_priors.len() != class_labels.len() {
106+
return Err(Failed::fit(
107+
"Size of priors provided does not match the number of classes of the data.",
108+
));
109+
}
110+
class_priors
111+
} else {
112+
class_count
113+
.into_iter()
114+
.map(|c| c / T::from(n_samples).unwrap())
115+
.collect()
116+
};
117+
118+
let subdataset: Vec<M> = subdataset
119+
.into_iter()
120+
.map(|v| {
121+
let mut m = M::zeros(v.len(), n_features);
122+
for row in 0..v.len() {
123+
for col in 0..n_features {
124+
m.set(row, col, v[row][col]);
125+
}
126+
}
127+
m
128+
})
129+
.collect();
130+
131+
let (sigma, theta): (Vec<Vec<T>>, Vec<Vec<T>>) = subdataset
132+
.iter()
133+
.map(|data| (data.var(0), data.mean(0)))
134+
.unzip();
135+
136+
Ok(Self {
137+
class_labels,
138+
class_priors,
139+
sigma,
140+
theta,
141+
})
142+
}
143+
144+
/// Calculate probability of x equals to a value of a Gaussian distribution given its mean and its
145+
/// variance.
146+
fn calculate_log_probability(&self, value: T, mean: T, variance: T) -> T {
147+
let pi = T::from(std::f64::consts::PI).unwrap();
148+
-((value - mean).powf(T::two()) / (T::two() * variance))
149+
- (T::two() * pi).ln() / T::two()
150+
- (variance).ln() / T::two()
151+
}
152+
}
153+
154+
/// GaussianNB implements the categorical naive Bayes algorithm for categorically distributed data.
155+
#[derive(Serialize, Deserialize, Debug, PartialEq)]
156+
pub struct GaussianNB<T: RealNumber, M: Matrix<T>> {
157+
inner: BaseNaiveBayes<T, M, GaussianNBDistribution<T>>,
158+
}
159+
160+
impl<T: RealNumber, M: Matrix<T>> GaussianNB<T, M> {
161+
/// Fits GaussianNB with given data
162+
/// * `x` - training data of size NxM where N is the number of samples and M is the number of
163+
/// features.
164+
/// * `y` - vector with target values (classes) of length N.
165+
/// * `parameters` - additional parameters like class priors.
166+
pub fn fit(
167+
x: &M,
168+
y: &M::RowVector,
169+
parameters: GaussianNBParameters<T>,
170+
) -> Result<Self, Failed> {
171+
let distribution = GaussianNBDistribution::fit(x, y, parameters.priors)?;
172+
let inner = BaseNaiveBayes::fit(distribution)?;
173+
Ok(Self { inner })
174+
}
175+
176+
/// Estimates the class labels for the provided data.
177+
/// * `x` - data of shape NxM where N is number of data points to estimate and M is number of features.
178+
/// Returns a vector of size N with class estimates.
179+
pub fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
180+
self.inner.predict(x)
181+
}
182+
}
183+
184+
#[cfg(test)]
185+
mod tests {
186+
use super::*;
187+
use crate::linalg::naive::dense_matrix::DenseMatrix;
188+
189+
#[test]
190+
fn run_gaussian_naive_bayes() {
191+
let x = DenseMatrix::from_2d_array(&[
192+
&[-1., -1.],
193+
&[-2., -1.],
194+
&[-3., -2.],
195+
&[1., 1.],
196+
&[2., 1.],
197+
&[3., 2.],
198+
]);
199+
let y = vec![1., 1., 1., 2., 2., 2.];
200+
201+
let gnb = GaussianNB::fit(&x, &y, Default::default()).unwrap();
202+
let y_hat = gnb.predict(&x).unwrap();
203+
assert_eq!(y_hat, y);
204+
assert_eq!(
205+
gnb.inner.distribution.sigma,
206+
&[
207+
&[0.666666666666667, 0.22222222222222232],
208+
&[0.666666666666667, 0.22222222222222232]
209+
]
210+
);
211+
212+
assert_eq!(gnb.inner.distribution.class_priors, &[0.5, 0.5]);
213+
214+
assert_eq!(
215+
gnb.inner.distribution.theta,
216+
&[&[-2., -1.3333333333333333], &[2., 1.3333333333333333]]
217+
);
218+
}
219+
220+
#[test]
221+
fn run_gaussian_naive_bayes_with_priors() {
222+
let x = DenseMatrix::from_2d_array(&[
223+
&[-1., -1.],
224+
&[-2., -1.],
225+
&[-3., -2.],
226+
&[1., 1.],
227+
&[2., 1.],
228+
&[3., 2.],
229+
]);
230+
let y = vec![1., 1., 1., 2., 2., 2.];
231+
232+
let priors = vec![0.3, 0.7];
233+
let parameters = GaussianNBParameters::new(Some(priors.clone()));
234+
let gnb = GaussianNB::fit(&x, &y, parameters).unwrap();
235+
236+
assert_eq!(gnb.inner.distribution.class_priors, priors);
237+
}
238+
239+
#[test]
240+
fn serde() {
241+
let x = DenseMatrix::<f64>::from_2d_array(&[
242+
&[-1., -1.],
243+
&[-2., -1.],
244+
&[-3., -2.],
245+
&[1., 1.],
246+
&[2., 1.],
247+
&[3., 2.],
248+
]);
249+
let y = vec![1., 1., 1., 2., 2., 2.];
250+
251+
let gnb = GaussianNB::fit(&x, &y, Default::default()).unwrap();
252+
let deserialized_gnb: GaussianNB<f64, DenseMatrix<f64>> =
253+
serde_json::from_str(&serde_json::to_string(&gnb).unwrap()).unwrap();
254+
255+
assert_eq!(gnb, deserialized_gnb);
256+
}
257+
}

src/naive_bayes/mod.rs

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -65,4 +65,6 @@ impl<T: RealNumber, M: Matrix<T>, D: NBDistribution<T, M>> BaseNaiveBayes<T, M,
6565
}
6666
}
6767
mod categorical;
68+
mod gaussian;
6869
pub use categorical::{CategoricalNB, CategoricalNBParameters};
70+
pub use gaussian::{GaussianNB, GaussianNBParameters};

0 commit comments

Comments
 (0)