Skip to content

Commit 43584e1

Browse files
committed
Fix clippy::or_fun_call
1 parent 4d75af6 commit 43584e1

File tree

6 files changed

+17
-12
lines changed

6 files changed

+17
-12
lines changed

src/ensemble/random_forest_classifier.rs

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -137,13 +137,13 @@ impl<T: RealNumber> RandomForestClassifier<T> {
137137
yi[i] = classes.iter().position(|c| yc == *c).unwrap();
138138
}
139139

140-
let mtry = parameters.m.unwrap_or(
140+
let mtry = parameters.m.unwrap_or_else(|| {
141141
(T::from(num_attributes).unwrap())
142142
.sqrt()
143143
.floor()
144144
.to_usize()
145-
.unwrap(),
146-
);
145+
.unwrap()
146+
});
147147

148148
let classes = y_m.unique();
149149
let k = classes.len();

src/lib.rs

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,6 @@
6565
//! ```
6666
6767
#![allow(
68-
clippy::or_fun_call,
6968
clippy::needless_range_loop,
7069
clippy::ptr_arg,
7170
clippy::len_without_is_empty,

src/metrics/cluster_hcv.rs

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -24,8 +24,8 @@ impl HCVScore {
2424
let contingency = contingency_matrix(&labels_true, &labels_pred);
2525
let mi: T = mutual_info_score(&contingency);
2626

27-
let homogeneity = entropy_c.map(|e| mi / e).unwrap_or(T::one());
28-
let completeness = entropy_k.map(|e| mi / e).unwrap_or(T::one());
27+
let homogeneity = entropy_c.map(|e| mi / e).unwrap_or_else(T::one);
28+
let completeness = entropy_k.map(|e| mi / e).unwrap_or_else(T::one);
2929

3030
let v_measure_score = if homogeneity + completeness == T::zero() {
3131
T::zero()

src/svm/svc.rs

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -561,7 +561,9 @@ impl<'a, T: RealNumber, M: Matrix<T>, K: Kernel<T, M::RowVector>> Optimizer<'a,
561561
(
562562
idx_1,
563563
idx_2,
564-
k_v_12.unwrap_or(self.kernel.apply(&self.sv[idx_1].x, &self.sv[idx_2].x)),
564+
k_v_12.unwrap_or_else(|| {
565+
self.kernel.apply(&self.sv[idx_1].x, &self.sv[idx_2].x)
566+
}),
565567
)
566568
})
567569
}
@@ -597,7 +599,9 @@ impl<'a, T: RealNumber, M: Matrix<T>, K: Kernel<T, M::RowVector>> Optimizer<'a,
597599
(
598600
idx_1,
599601
idx_2,
600-
k_v_12.unwrap_or(self.kernel.apply(&self.sv[idx_1].x, &self.sv[idx_2].x)),
602+
k_v_12.unwrap_or_else(|| {
603+
self.kernel.apply(&self.sv[idx_1].x, &self.sv[idx_2].x)
604+
}),
601605
)
602606
})
603607
}

src/tree/decision_tree_classifier.rs

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -376,7 +376,8 @@ impl<T: RealNumber> DecisionTreeClassifier<T> {
376376
let node = &self.nodes[node_id];
377377
if node.true_child == None && node.false_child == None {
378378
result = node.output;
379-
} else if x.get(row, node.split_feature) <= node.split_value.unwrap_or(T::nan())
379+
} else if x.get(row, node.split_feature)
380+
<= node.split_value.unwrap_or_else(T::nan)
380381
{
381382
queue.push_back(node.true_child.unwrap());
382383
} else {
@@ -529,7 +530,7 @@ impl<T: RealNumber> DecisionTreeClassifier<T> {
529530
for i in 0..n {
530531
if visitor.samples[i] > 0 {
531532
if visitor.x.get(i, self.nodes[visitor.node].split_feature)
532-
<= self.nodes[visitor.node].split_value.unwrap_or(T::nan())
533+
<= self.nodes[visitor.node].split_value.unwrap_or_else(T::nan)
533534
{
534535
true_samples[i] = visitor.samples[i];
535536
tc += true_samples[i];

src/tree/decision_tree_regressor.rs

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -282,7 +282,8 @@ impl<T: RealNumber> DecisionTreeRegressor<T> {
282282
let node = &self.nodes[node_id];
283283
if node.true_child == None && node.false_child == None {
284284
result = node.output;
285-
} else if x.get(row, node.split_feature) <= node.split_value.unwrap_or(T::nan())
285+
} else if x.get(row, node.split_feature)
286+
<= node.split_value.unwrap_or_else(T::nan)
286287
{
287288
queue.push_back(node.true_child.unwrap());
288289
} else {
@@ -401,7 +402,7 @@ impl<T: RealNumber> DecisionTreeRegressor<T> {
401402
for i in 0..n {
402403
if visitor.samples[i] > 0 {
403404
if visitor.x.get(i, self.nodes[visitor.node].split_feature)
404-
<= self.nodes[visitor.node].split_value.unwrap_or(T::nan())
405+
<= self.nodes[visitor.node].split_value.unwrap_or_else(T::nan)
405406
{
406407
true_samples[i] = visitor.samples[i];
407408
tc += true_samples[i];

0 commit comments

Comments
 (0)