-
Notifications
You must be signed in to change notification settings - Fork 26
Description
Gents, is this possible?
I was suggested to do like below
`import torch
torch.set_default_device('cpu')
Now import other libraries
from mlblocks import MLPipeline
pipeline_name = 'mistral_detector'
pipeline = MLPipeline(pipeline_name)`
but I got an error on this code
step = 5 context = pipeline.fit(**context, start_=step, output_=step) context.keys()
0%| | 0/1508 [00:00<?, ?it/s]
Exception caught producing MLBlock sigllm.primitives.forecasting.huggingface.HF#1
Traceback (most recent call last):
File "c:\Users\Administrator\anaconda3\envs\py310\lib\site-packages\mlblocks\mlpipeline.py", line 679, in produce_block
block_outputs = block.produce(**produce_args)
File "c:\Users\Administrator\anaconda3\envs\py310\lib\site-packages\mlblocks\mlblock.py", line 331, in produce
return getattr(self.instance, self.produce_method)(**produce_kwargs)
File "c:\Users\Administrator\anaconda3\envs\py310\lib\site-packages\sigllm\primitives\forecasting\huggingface.py", line 116, in forecast
tokenized_input = self.tokenizer([text], return_tensors='pt').to('cuda')
File "c:\Users\Administrator\anaconda3\envs\py310\lib\site-packages\transformers\tokenization_utils_base.py", line 819, in to
self.data = {k: v.to(device=device) if isinstance(v, torch.Tensor) else v for k, v in self.data.items()}
File "c:\Users\Administrator\anaconda3\envs\py310\lib\site-packages\transformers\tokenization_utils_base.py", line 819, in
self.data = {k: v.to(device=device) if isinstance(v, torch.Tensor) else v for k, v in self.data.items()}
File "c:\Users\Administrator\anaconda3\envs\py310\lib\site-packages\torch\utils_device.py", line 106, in torch_function
return func(*args, **kwargs)
File "c:\Users\Administrator\anaconda3\envs\py310\lib\site-packages\torch\cuda_init.py", line 310, in _lazy_init
raise AssertionError("Torch not compiled with CUDA enabled")
AssertionError: Torch not compiled with CUDA enabled
AssertionError Traceback (most recent call last)
Cell In[41], line 2
1 step = 5
----> 2 context = pipeline.fit(**context, start_=step, output_=step)
3 context.keys()
File c:\Users\Administrator\anaconda3\envs\py310\lib\site-packages\mlblocks\mlpipeline.py:805, in MLPipeline.fit(self, X, y, output_, start_, debug, **kwargs)
802 self._fit_block(block, block_name, context, debug_info)
804 if fit_pending or output_blocks:
--> 805 self._produce_block(
806 block, block_name, context, output_variables, outputs, debug_info)
808 # We already captured the output from this block
809 if block_name in output_blocks:
File c:\Users\Administrator\anaconda3\envs\py310\lib\site-packages\mlblocks\mlpipeline.py:679, in MLPipeline._produce_block(self, block, block_name, context, output_variables, outputs, debug_info)
677 memory_before = process.memory_info().rss
678 start = datetime.utcnow()
--> 679 block_outputs = block.produce(**produce_args)
680 elapsed = datetime.utcnow() - start
681 memory_after = process.memory_info().rss
File c:\Users\Administrator\anaconda3\envs\py310\lib\site-packages\mlblocks\mlblock.py:331, in MLBlock.produce(self, **kwargs)
329 produce_kwargs = self._get_method_kwargs(produce_kwargs, self.produce_args)
330 if self._class:
...
312 raise AssertionError(
313 "libcudart functions unavailable. It looks like you have a broken build?"
314 )
AssertionError: Torch not compiled with CUDA enabled
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...
That's Windows Server, Python 3.10.16
Thanks in advance!