|
| 1 | +""" |
| 2 | +Jointly optimize refractive-diffractive lens with a differentiable ray-wave model. This code can be easily extended to end-to-end refractive-diffractive lens and network design. |
| 3 | +
|
| 4 | +Technical Paper: |
| 5 | + Xinge Yang, Matheus Souza, Kunyi Wang, Praneeth Chakravarthula, Qiang Fu and Wolfgang Heidrich, "End-to-End Hybrid Refractive-Diffractive Lens Design with Differentiable Ray-Wave Model," Siggraph Asia 2024. |
| 6 | +
|
| 7 | +This code and data is released under the Creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC.) In a nutshell: |
| 8 | + # The license is only for non-commercial use (commercial licenses can be obtained from authors). |
| 9 | + # The material is provided as-is, with no warranties whatsoever. |
| 10 | + # If you publish any code, data, or scientific work based on this, please cite our work. |
| 11 | +""" |
| 12 | + |
| 13 | +import logging |
| 14 | +import os |
| 15 | +import random |
| 16 | +import string |
| 17 | +from datetime import datetime |
| 18 | + |
| 19 | +import torch |
| 20 | +import yaml |
| 21 | +from torchvision.utils import save_image |
| 22 | +from tqdm import tqdm |
| 23 | + |
| 24 | +from deeplens.hybridlens import HybridLens |
| 25 | +from deeplens.optics.loss import PSFLoss |
| 26 | +from deeplens.utils import set_logger, set_seed |
| 27 | + |
| 28 | + |
| 29 | +def config(): |
| 30 | + # ==> Config |
| 31 | + args = {"seed": 0, "DEBUG": True} |
| 32 | + |
| 33 | + # ==> Result folder |
| 34 | + characters = string.ascii_letters + string.digits |
| 35 | + random_string = "".join(random.choice(characters) for i in range(4)) |
| 36 | + result_dir = ( |
| 37 | + "./results/" |
| 38 | + + datetime.now().strftime("%m%d-%H%M%S") |
| 39 | + + "-HybridLens" |
| 40 | + + "-" |
| 41 | + + random_string |
| 42 | + ) |
| 43 | + args["result_dir"] = result_dir |
| 44 | + os.makedirs(result_dir, exist_ok=True) |
| 45 | + print(f"Result folder: {result_dir}") |
| 46 | + |
| 47 | + if args["seed"] is None: |
| 48 | + seed = random.randint(0, 100) |
| 49 | + args["seed"] = seed |
| 50 | + set_seed(args["seed"]) |
| 51 | + |
| 52 | + # ==> Log |
| 53 | + set_logger(result_dir) |
| 54 | + if not args["DEBUG"]: |
| 55 | + raise Exception("Add your wandb logging config here.") |
| 56 | + |
| 57 | + # ==> Device |
| 58 | + num_gpus = torch.cuda.device_count() |
| 59 | + args["num_gpus"] = num_gpus |
| 60 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 61 | + args["device"] = device |
| 62 | + logging.info(f"Using {num_gpus} {torch.cuda.get_device_name(0)} GPU(s)") |
| 63 | + |
| 64 | + # ==> Save config |
| 65 | + with open(f"{result_dir}/config.yml", "w") as f: |
| 66 | + yaml.dump(args, f) |
| 67 | + |
| 68 | + with open(f"{result_dir}/6_hybridlens_design.py", "w") as f: |
| 69 | + with open("6_hybridlens_design.py", "r") as code: |
| 70 | + f.write(code.read()) |
| 71 | + |
| 72 | + return args |
| 73 | + |
| 74 | + |
| 75 | +def main(args): |
| 76 | + # Create a hybrid refractive-diffractive lens |
| 77 | + lens = HybridLens(filename="./lenses/hybridlens/a489_doe.json") |
| 78 | + lens.double() |
| 79 | + |
| 80 | + # PSF optimization loop to focus blue light |
| 81 | + optimizer = lens.get_optimizer(doe_lr=0.1, lens_lr=[1e-4, 1e-4, 1e-1, 1e-5]) |
| 82 | + loss_fn = PSFLoss() |
| 83 | + for i in tqdm(range(100 + 1)): |
| 84 | + psf = lens.psf(point=[0.0, 0.0, -10000.0], ks=101, wvln=0.489) |
| 85 | + |
| 86 | + optimizer.zero_grad() |
| 87 | + loss = loss_fn(psf) |
| 88 | + loss.backward() |
| 89 | + optimizer.step() |
| 90 | + |
| 91 | + if i % 25 == 0: |
| 92 | + lens.write_lens_json(f"{args['result_dir']}/lens_iter{i}.json") |
| 93 | + lens.analysis(save_name=f"{args['result_dir']}/lens_iter{i}.png") |
| 94 | + save_image( |
| 95 | + psf.detach().clone(), |
| 96 | + f"{args['result_dir']}/psf_iter{i}.png", |
| 97 | + normalize=True, |
| 98 | + ) |
| 99 | + |
| 100 | + |
| 101 | +if __name__ == "__main__": |
| 102 | + args = config() |
| 103 | + main(args) |
0 commit comments