|
| 1 | +/* |
| 2 | + Copyright (c) 2005-2020 sdragonx (mail:sdragonx@foxmail.com) |
| 3 | +
|
| 4 | + matrix_inverse.hpp |
| 5 | +
|
| 6 | + 2022-02-13 23:00:38 |
| 7 | +
|
| 8 | +*/ |
| 9 | +#ifndef GLM_MATRIX_INVERSE_HPP_20220213230038 |
| 10 | +#define GLM_MATRIX_INVERSE_HPP_20220213230038 |
| 11 | + |
| 12 | +#include "matrix_determinant.hpp" |
| 13 | + |
| 14 | + |
| 15 | + |
| 16 | +namespace glm { |
| 17 | + |
| 18 | +// |
| 19 | +// mat2 inverse( in mat2 ) |
| 20 | +// |
| 21 | + |
| 22 | +template<typename T> |
| 23 | +GLM_API mat<2, 2, T> inverse(const mat<2, 2, T>& m) |
| 24 | +{ |
| 25 | + T d = mat2_determinant(m); |
| 26 | + |
| 27 | + if (abs(d) < constants<T>::epsilon) { |
| 28 | + return m; |
| 29 | + } |
| 30 | + |
| 31 | + d = constants<T>::one / d; |
| 32 | + |
| 33 | + mat<2, 2, T> product; |
| 34 | + product[0][0] = + m[1][1] * d; |
| 35 | + product[0][1] = - m[0][1] * d; |
| 36 | + product[1][0] = - m[1][0] * d; |
| 37 | + product[1][1] = + m[0][0] * d; |
| 38 | + |
| 39 | + return product; |
| 40 | +} |
| 41 | + |
| 42 | + |
| 43 | +// |
| 44 | +// mat3 inverse( in mat3 ) |
| 45 | +// |
| 46 | + |
| 47 | +template<typename T> |
| 48 | +GLM_API mat<3, 3, T> inverse(const mat<3, 3, T>& m) |
| 49 | +{ |
| 50 | + T d = determinant(m); |
| 51 | + |
| 52 | + if (abs(d) < constants<T>::epsilon) { |
| 53 | + return m; |
| 54 | + } |
| 55 | + |
| 56 | + d = constants<T>::one / d; |
| 57 | + |
| 58 | + mat<3, 3, T> product; |
| 59 | + product[0][0] = +(m[1][1] * m[2][2] - m[2][1] * m[1][2]) * d; |
| 60 | + product[0][1] = -(m[0][1] * m[2][2] - m[2][1] * m[0][2]) * d; |
| 61 | + product[0][2] = +(m[0][1] * m[1][2] - m[1][1] * m[0][2]) * d; |
| 62 | + product[1][0] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]) * d; |
| 63 | + product[1][1] = +(m[0][0] * m[2][2] - m[2][0] * m[0][2]) * d; |
| 64 | + product[1][2] = -(m[0][0] * m[1][2] - m[1][0] * m[0][2]) * d; |
| 65 | + product[2][0] = +(m[1][0] * m[2][1] - m[2][0] * m[1][1]) * d; |
| 66 | + product[2][1] = -(m[0][0] * m[2][1] - m[2][0] * m[0][1]) * d; |
| 67 | + product[2][2] = +(m[0][0] * m[1][1] - m[1][0] * m[0][1]) * d; |
| 68 | + |
| 69 | + return product; |
| 70 | +} |
| 71 | + |
| 72 | +// |
| 73 | +// mat4 inverse( in mat4 ) |
| 74 | +// |
| 75 | + |
| 76 | +template<typename T> |
| 77 | +GLM_API mat<4, 4, T> inverse(const mat<4, 4, T>& m) |
| 78 | +{ |
| 79 | + T a0 = m[0][0] * m[1][1] - m[0][1] * m[1][0]; |
| 80 | + T a1 = m[0][0] * m[1][2] - m[0][2] * m[1][0]; |
| 81 | + T a2 = m[0][0] * m[1][3] - m[0][3] * m[1][0]; |
| 82 | + T a3 = m[0][1] * m[1][2] - m[0][2] * m[1][1]; |
| 83 | + T a4 = m[0][1] * m[1][3] - m[0][3] * m[1][1]; |
| 84 | + T a5 = m[0][2] * m[1][3] - m[0][3] * m[1][2]; |
| 85 | + T b0 = m[2][0] * m[3][1] - m[2][1] * m[3][0]; |
| 86 | + T b1 = m[2][0] * m[3][2] - m[2][2] * m[3][0]; |
| 87 | + T b2 = m[2][0] * m[3][3] - m[2][3] * m[3][0]; |
| 88 | + T b3 = m[2][1] * m[3][2] - m[2][2] * m[3][1]; |
| 89 | + T b4 = m[2][1] * m[3][3] - m[2][3] * m[3][1]; |
| 90 | + T b5 = m[2][2] * m[3][3] - m[2][3] * m[3][2]; |
| 91 | + |
| 92 | + // calculate the determinant. |
| 93 | + T d = a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0; |
| 94 | + |
| 95 | + if (abs(d) < constants<T>::epsilon) { |
| 96 | + return m; |
| 97 | + } |
| 98 | + |
| 99 | + d = constants<T>::one / d; |
| 100 | + |
| 101 | + mat<4, 4, T> product; |
| 102 | + product[0][0] = (+ m[1][1] * b5 - m[1][2] * b4 + m[1][3] * b3) * d; |
| 103 | + product[0][1] = (- m[0][1] * b5 + m[0][2] * b4 - m[0][3] * b3) * d; |
| 104 | + product[0][2] = (+ m[3][1] * a5 - m[3][2] * a4 + m[3][3] * a3) * d; |
| 105 | + product[0][3] = (- m[2][1] * a5 + m[2][2] * a4 - m[2][3] * a3) * d; |
| 106 | + |
| 107 | + product[1][0] = (- m[1][0] * b5 + m[1][2] * b2 - m[1][3] * b1) * d; |
| 108 | + product[1][1] = (+ m[0][0] * b5 - m[0][2] * b2 + m[0][3] * b1) * d; |
| 109 | + product[1][2] = (- m[3][0] * a5 + m[3][2] * a2 - m[3][3] * a1) * d; |
| 110 | + product[1][3] = (+ m[2][0] * a5 - m[2][2] * a2 + m[2][3] * a1) * d; |
| 111 | + |
| 112 | + product[2][0] = (+ m[1][0] * b4 - m[1][1] * b2 + m[1][3] * b0) * d; |
| 113 | + product[2][1] = (- m[0][0] * b4 + m[0][1] * b2 - m[0][3] * b0) * d; |
| 114 | + product[2][2] = (+ m[3][0] * a4 - m[3][1] * a2 + m[3][3] * a0) * d; |
| 115 | + product[2][3] = (- m[2][0] * a4 + m[2][1] * a2 - m[2][3] * a0) * d; |
| 116 | + |
| 117 | + product[3][0] = (- m[1][0] * b3 + m[1][1] * b1 - m[1][2] * b0) * d; |
| 118 | + product[3][1] = (+ m[0][0] * b3 - m[0][1] * b1 + m[0][2] * b0) * d; |
| 119 | + product[3][2] = (- m[3][0] * a3 + m[3][1] * a1 - m[3][2] * a0) * d; |
| 120 | + product[3][3] = (+ m[2][0] * a3 - m[2][1] * a1 + m[2][2] * a0) * d; |
| 121 | + |
| 122 | + return product; |
| 123 | +} |
| 124 | + |
| 125 | + |
| 126 | +}// end namespace glm |
| 127 | + |
| 128 | +#endif// GLM_MATRIX_INVERSE_HPP_20220213230038 |
0 commit comments