Skip to content

Commit 64537e0

Browse files
DOC: add link to the plot_mahalanobis_distances example (scikit-learn#31485)
Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com>
1 parent bb79d6e commit 64537e0

File tree

1 file changed

+4
-1
lines changed

1 file changed

+4
-1
lines changed

sklearn/covariance/_empirical_covariance.py

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -135,7 +135,7 @@ class EmpiricalCovariance(BaseEstimator):
135135
Estimated location, i.e. the estimated mean.
136136
137137
covariance_ : ndarray of shape (n_features, n_features)
138-
Estimated covariance matrix
138+
Estimated covariance matrix.
139139
140140
precision_ : ndarray of shape (n_features, n_features)
141141
Estimated pseudo-inverse matrix.
@@ -343,6 +343,9 @@ def error_norm(self, comp_cov, norm="frobenius", scaling=True, squared=True):
343343
def mahalanobis(self, X):
344344
"""Compute the squared Mahalanobis distances of given observations.
345345
346+
For a detailed example of how outliers affects the Mahalanobis distance,
347+
see :ref:`sphx_glr_auto_examples_covariance_plot_mahalanobis_distances.py`.
348+
346349
Parameters
347350
----------
348351
X : array-like of shape (n_samples, n_features)

0 commit comments

Comments
 (0)