Skip to content

Commit 8321369

Browse files
author
Ubuntu
committed
Trying something else?
1 parent 8c2c74c commit 8321369

File tree

1 file changed

+18
-21
lines changed

1 file changed

+18
-21
lines changed

nucleus/model.py

Lines changed: 18 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -11,27 +11,24 @@
1111
1212
Doing the three steps above allows you to visualize model performance within Nucleus, or compare multiple models that have been run on the same Dataset.
1313
14-
Note that you can always add more predictions to a dataset, but then you will need to re-run the calculation of metrics in order to have them be correct.
15-
16-
JUST CHECKING IF THIS RENDERS2???
17-
18-
::
19-
import nucleus
20-
client = nucleus.NucleusClient("YOUR_SCALE_API_KEY")
21-
prediction_1 = nucleus.BoxPrediction(label="label", x=0, y=0, width=10, height=10, reference_id="1", confidence=0.9, class_pdf={'label': 0.9, 'other_label': 0.1})
22-
prediction_2 = nucleus.BoxPrediction(label="label", x=0, y=0, width=10, height=10, reference_id="2", confidence=0.2, class_pdf={'label': 0.2, 'other_label': 0.8})
23-
model = client.add_model(name="My Model", reference_id="My-CNN", metadata={"timestamp": "121012401"})
24-
# For small ingestions, we recommend synchronous ingestion
25-
response = dataset.upload_predictions(model, [prediction_1, prediction_2])
26-
# For large ingestions, we recommend asynchronous ingestion
27-
job = dataset.upload_predictions([prediction_1, prediction_2], asynchronous=True)
28-
# Check current status
29-
job.status()
30-
# Sleep until ingestion is done
31-
job.sleep_until_complete()
32-
# Check errors
33-
job.errors()
34-
14+
Note that you can always add more predictions to a dataset, but then you will need to re-run the calculation of metrics in order to have them be correct. ::
15+
16+
17+
import nucleus
18+
client = nucleus.NucleusClient("YOUR_SCALE_API_KEY")
19+
prediction_1 = nucleus.BoxPrediction(label="label", x=0, y=0, width=10, height=10, reference_id="1", confidence=0.9, class_pdf={'label': 0.9, 'other_label': 0.1})
20+
prediction_2 = nucleus.BoxPrediction(label="label", x=0, y=0, width=10, height=10, reference_id="2", confidence=0.2, class_pdf={'label': 0.2, 'other_label': 0.8})
21+
model = client.add_model(name="My Model", reference_id="My-CNN", metadata={"timestamp": "121012401"})
22+
# For small ingestions, we recommend synchronous ingestion
23+
response = dataset.upload_predictions(model, [prediction_1, prediction_2])
24+
# For large ingestions, we recommend asynchronous ingestion
25+
job = dataset.upload_predictions([prediction_1, prediction_2], asynchronous=True)
26+
# Check current status
27+
job.status()
28+
# Sleep until ingestion is done
29+
job.sleep_until_complete()
30+
# Check errors
31+
job.errors()
3532
"""
3633
from typing import List, Optional, Dict, Union
3734
from .dataset import Dataset

0 commit comments

Comments
 (0)