@@ -401,7 +401,7 @@ def _write_imports(
401
401
402
402
if mojo_model or binary_h2o_model :
403
403
cls .score_code += (
404
- "import h2o\n import gzip \n import shutil \n import os \ n\n h2o.init()\n \n "
404
+ "import h2o\n \n h2o.init()\n \n "
405
405
)
406
406
elif binary_string :
407
407
cls .score_code += (
@@ -509,11 +509,11 @@ def _viya4_model_load(
509
509
if mojo_model :
510
510
cls .score_code += (
511
511
f"model = h2o.import_mojo(str(Path(settings.pickle_path"
512
- f") / { model_file_name } ))\n \n "
512
+ f") / \" { model_file_name } \" ))\n \n "
513
513
)
514
514
return (
515
515
f"{ '' :8} model = h2o.import_mojo(str(Path(settings.pickle_path) / "
516
- f"{ model_file_name } ))\n \n "
516
+ f"\" { model_file_name } \" ))\n \n "
517
517
)
518
518
elif binary_h2o_model :
519
519
cls .score_code += (
@@ -527,8 +527,8 @@ def _viya4_model_load(
527
527
else :
528
528
cls .score_code += (
529
529
f"with open(Path(settings.pickle_path) / "
530
- f'"{ model_file_name } ", "rb") as pickle_model:\n '
531
- f"model = { pickle_type } .load(pickle_model)\n \n "
530
+ f'\ "{ model_file_name } \ " , "rb") as pickle_model:\n '
531
+ f"{ '' :4 } model = { pickle_type } .load(pickle_model)\n \n "
532
532
)
533
533
return (
534
534
f"{ '' :8} with open(Path(settings.pickle_path) / "
@@ -644,7 +644,7 @@ def _predict_method(
644
644
cls .score_code += (
645
645
f"{ '' :4} input_array = pd.DataFrame("
646
646
f"[[{ ', ' .join (var_list )} ]],\n { '' :31} columns=["
647
- f"{ column_names } ],\n { '' :31} dtype=float ,\n { '' :31} "
647
+ f"{ column_names } ],\n { '' :31} dtype=object ,\n { '' :31} "
648
648
f"index=[0])\n { '' :4} column_types = { column_types } \n "
649
649
f"{ '' :4} h2o_array = h2o.H2OFrame(input_array, "
650
650
f"column_types=column_types)\n { '' :4} prediction = "
@@ -656,15 +656,15 @@ def _predict_method(
656
656
cls .score_code += (
657
657
f"{ '' :4} inputArray = pd.DataFrame("
658
658
f"[[1.0, { ', ' .join (var_list )} ]],\n { '' :29} columns=["
659
- f"\" const\" , { column_names } ],\n { '' :29} dtype=float )\n "
659
+ f"\" const\" , { column_names } ],\n { '' :29} dtype=object )\n "
660
660
f"{ '' :4} prediction = model.{ method .__name__ } "
661
661
f"(input_array)\n "
662
662
)
663
663
else :
664
664
cls .score_code += (
665
665
f"{ '' :4} input_array = pd.DataFrame("
666
666
f"[[{ ', ' .join (var_list )} ]],\n { '' :30} columns=["
667
- f"{ column_names } ],\n { '' :30} dtype=float )\n { '' :4} "
667
+ f"{ column_names } ],\n { '' :30} dtype=object )\n { '' :4} "
668
668
f"prediction = model.{ method .__name__ } (input_array)\n "
669
669
)
670
670
0 commit comments