@@ -355,17 +355,17 @@ def write_model_properties_json(
355
355
)
356
356
357
357
if not target_values :
358
- model_function = model_function if model_function else "Prediction "
358
+ model_function = model_function if model_function else "prediction "
359
359
target_level = "Interval"
360
360
target_event = ""
361
361
event_prob_var = ""
362
362
elif isinstance (target_values , list ) and len (target_values ) == 2 :
363
- model_function = model_function if model_function else "Classification "
363
+ model_function = model_function if model_function else "classification "
364
364
target_level = "Binary"
365
365
target_event = str (target_values [0 ])
366
366
event_prob_var = f"P_{ target_values [0 ]} "
367
367
elif isinstance (target_values , list ) and len (target_values ) > 2 :
368
- model_function = model_function if model_function else "Classification "
368
+ model_function = model_function if model_function else "classification "
369
369
target_level = "Nominal"
370
370
target_event = ""
371
371
event_prob_var = ""
@@ -2410,7 +2410,7 @@ def upload_training_data(
2410
2410
"either delete/rename the old table or give a new name to the current table."
2411
2411
)
2412
2412
2413
- return server + "/" + caslib + "/" + train_data_name
2413
+ return server + "/" + caslib + "/" + train_data_name . upper ()
2414
2414
2415
2415
@staticmethod
2416
2416
def generate_outcome_average (
@@ -2730,7 +2730,7 @@ def generate_variable_importance(
2730
2730
@classmethod
2731
2731
def generate_misc (cls , model_files : Union [str , Path , dict ]):
2732
2732
"""
2733
- Generates the dmcas_relativeimportance .json file, which is used to determine variable importance
2733
+ Generates the dmcas_misc .json file, which is used to determine variable importance
2734
2734
2735
2735
Parameters
2736
2736
----------
0 commit comments