@@ -640,7 +640,10 @@ def _wrap_indent_string(text, indent=0):
640
640
Wrapped and indented string.
641
641
"""
642
642
wrapped_lines = textwrap .fill (str (text ), width = 88 - indent ).split ("\n " )
643
- return "\n " .join (f"{ '' :{indent }} " + line for line in wrapped_lines )
643
+ if indent > 0 :
644
+ return "\n " .join (f"{ '' :{indent }} " + line for line in wrapped_lines )
645
+ else :
646
+ return "\n " .join (line for line in wrapped_lines )
644
647
645
648
@classmethod
646
649
def _predict_method (
@@ -673,7 +676,6 @@ def _predict_method(
673
676
Flag to indicate that the model is a tensorflow model. The default value is
674
677
False.
675
678
"""
676
- column_names = ", " .join (f'"{ col } "' for col in var_list )
677
679
# H2O models
678
680
if dtype_list :
679
681
column_types = "{"
@@ -685,13 +687,15 @@ def _predict_method(
685
687
column_types += f'"{ var } " : "{ col_type } ", '
686
688
column_types = column_types .rstrip (", " )
687
689
column_types += "}"
688
- input_dict = [f"' { var } ' : { var } " for var in var_list ]
690
+ input_dict = [f"\" { var } \" : { var } " for var in var_list ]
689
691
cls .score_code += (f"{ '' :4} index=None\n "
690
692
f"{ '' :4} if not isinstance({ var_list [0 ]} , pd.Series):\n " +
691
693
f"{ '' :8} index=[0]\n " )
692
-
693
- input_frame = f"{ '' :4} input_array = pd.DataFrame({{{ ',' .join (input_dict )} }}, index=index)\n "
694
- cls .score_code += cls ._wrap_indent_string (input_frame )
694
+
695
+ cls .score_code += f"{ '' :4} input_array = pd.DataFrame(\n "
696
+ input_frame = f'{{{ ", " .join (input_dict )} }}, index=index'
697
+ cls .score_code += cls ._wrap_indent_string (input_frame , 8 )
698
+ cls .score_code += f"\n { '' :4} )\n "
695
699
if missing_values :
696
700
cls .score_code += (
697
701
f"{ '' :4} input_array = impute_missing_values(input_array)"
@@ -705,31 +709,36 @@ def _predict_method(
705
709
)
706
710
# Statsmodels models
707
711
elif statsmodels_model :
708
- input_dict = [ f"' { var } ': { var } " for var in var_list ]
709
- input_dict . append ( "'const': const" )
712
+ var_list . insert ( 0 , "const" )
713
+ input_dict = [ f" \" { var } \" : { var } " for var in var_list ]
710
714
cls .score_code += (f"{ '' :4} index=None\n "
711
715
f"{ '' :4} if not isinstance({ var_list [0 ]} , pd.Series):\n "
712
716
f"{ '' :8} index=[0]\n "
713
717
f"{ '' :8} const = 1\n "
714
718
f"{ '' :4} else:\n "
715
719
f"{ '' :8} const = pd.Series([1 for x in len({ var_list [0 ]} )])" )
716
-
717
- input_frame = f"{ '' :4} input_array = pd.DataFrame({{{ ',' .join (input_dict )} }}, index=index)\n "
718
- cls .score_code += cls ._wrap_indent_string (input_frame )
720
+
721
+ cls .score_code += f"{ '' :4} input_array = pd.DataFrame(\n "
722
+ input_frame = f'{{{ ", " .join (input_dict )} }}, index=index'
723
+ cls .score_code += cls ._wrap_indent_string (input_frame , 8 )
724
+ cls .score_code += f"\n { '' :4} )\n "
719
725
if missing_values :
720
726
cls .score_code += (
721
727
f"{ '' :4} input_array = impute_missing_values(input_array)"
722
728
)
723
729
cls .score_code += (
724
- f"{ '' :4} prediction = model.{ method .__name__ } " f" (input_array)\n "
730
+ f"{ '' :4} prediction = model.{ method .__name__ } (input_array)\n "
725
731
)
726
732
elif tf_model :
727
- input_dict = [f"' { var } ' : { var } " for var in var_list ]
733
+ input_dict = [f"\" { var } \" : { var } " for var in var_list ]
728
734
cls .score_code += (f"{ '' :4} index=None\n "
729
735
f"{ '' :4} if not isinstance({ var_list [0 ]} , pd.Series):\n "
730
736
f"{ '' :8} index=[0]\n " )
731
-
732
- input_frame = f"{ '' :4} input_array = pd.DataFrame({{{ ',' .join (input_dict )} }}, index=index)\n "
737
+
738
+ cls .score_code += f"{ '' :4} input_array = pd.DataFrame(\n "
739
+ input_frame = f'{{{ ", " .join (input_dict )} }}, index=index'
740
+ cls .score_code += cls ._wrap_indent_string (input_frame , 8 )
741
+ cls .score_code += f"\n { '' :4} )\n "
733
742
if missing_values :
734
743
cls .score_code += (
735
744
f"{ '' :4} input_array = impute_missing_values(input_array)"
@@ -743,13 +752,15 @@ def _predict_method(
743
752
f"{ '' :8} predictions = [p.tolist() for p in predictions]\n "
744
753
)
745
754
else :
746
- input_dict = [f"' { var } ' : { var } " for var in var_list ]
755
+ input_dict = [f"\" { var } \" : { var } " for var in var_list ]
747
756
cls .score_code += (f"{ '' :4} index=None\n "
748
757
f"{ '' :4} if not isinstance({ var_list [0 ]} , pd.Series):\n "
749
758
f"{ '' :8} index=[0]\n " )
750
-
751
- input_frame = f"{ '' :4} input_array = pd.DataFrame({{{ ',' .join (input_dict )} }}, index=index)\n "
752
- cls .score_code += cls ._wrap_indent_string (input_frame )
759
+
760
+ cls .score_code += f"{ '' :4} input_array = pd.DataFrame(\n "
761
+ input_frame = f'{{{ ", " .join (input_dict )} }}, index=index'
762
+ cls .score_code += cls ._wrap_indent_string (input_frame , 8 )
763
+ cls .score_code += f"\n { '' :4} )\n "
753
764
if missing_values :
754
765
cls .score_code += (
755
766
f"{ '' :4} input_array = impute_missing_values(input_array)"
0 commit comments