|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "09361f03-99d3-4cbf-a3ba-a75ca2c74b35", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Copyright © 2023, SAS Institute Inc., Cary, NC, USA. All Rights Reserved.\n", |
| 9 | + "SPDX-License-Identifier: Apache-2.0" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "id": "e9b8cb7c-1974-4af5-8992-d51f90fcfe5b", |
| 15 | + "metadata": {}, |
| 16 | + "source": [ |
| 17 | + "# Automatic Generation of the requirements.json File\n", |
| 18 | + "In order to validate Python models within a container publishing destination, the Python packages which contain the modules that are used in the Python score code file and its score resource files must be installed in the run-time container. You can install the packages when you publish a Python model or decision that contains a Python model to a container publishing destination by adding a `requirements.json` file that includes the package install statements to your model.\n", |
| 19 | + "\n", |
| 20 | + "This notebook provides an example execution and assessment of the create_requirements_json() function added in python-sasctl v1.8.0. The aim of this function is help to create the instructions (aka the `requirements.json` file) for a lightweight Python container in SAS Model Manager. Lightweight here meaning that the container will only install the packages found in the model's pickle files and python scripts.\n", |
| 21 | + "\n", |
| 22 | + "### **User Warnings**\n", |
| 23 | + "The methods utilized in this function can determine package dependencies and versions from provided scripts and pickle files, but there are some stipulations that need to be considered:\n", |
| 24 | + "\n", |
| 25 | + "1. If run outside of the development environment that the model was created in, the create_requirements_json() function **CANNOT** determine the required package _versions_ accurately. \n", |
| 26 | + "2. Not all Python packages have matching import and install names and as such some of the packages added to the requirements.json file may be incorrectly named (i.e. `import sklearn` vs `pip install scikit-learn`).\n", |
| 27 | + "\n", |
| 28 | + "As such, it is recommended that the user check over the requirements.json file for package name and version accuracy before deploying to a run-time container in SAS Model Manager." |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "id": "ef68334e-7fa3-481a-bc39-9aa6c389f925", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "---" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "markdown", |
| 41 | + "id": "4613074a-a138-4d93-810a-1bbfca79e957", |
| 42 | + "metadata": {}, |
| 43 | + "source": [ |
| 44 | + "As an example, let's create the requirements.json file for the HMEQ Decision Tree Classification model created and uploaded in pzmmModelImportExample.ipynb. Simply import the function and aim it at the model directory." |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": 1, |
| 50 | + "id": "654a1382-9576-4215-bf47-ac7fc69428e5", |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "from pathlib import Path\n", |
| 55 | + "from sasctl import pzmm" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": 2, |
| 61 | + "id": "1df8e5d3-c62e-4c35-993c-765a48d25444", |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "model_dir = Path.cwd() / \"data/hmeqModels/DecisionTreeClassifier\"\n", |
| 66 | + "requirements_json = pzmm.JSONFiles.create_requirements_json(model_dir)" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "markdown", |
| 71 | + "id": "ced96ece-8221-413f-a5b5-a03fa93be8fd", |
| 72 | + "metadata": {}, |
| 73 | + "source": [ |
| 74 | + "Let's take a quick look at what packages were determined for the Decision Tree Classifier model:" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": 3, |
| 80 | + "id": "2e3b29e6-aef5-4a02-a54b-57bf7e853cf0", |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [ |
| 83 | + { |
| 84 | + "name": "stdout", |
| 85 | + "output_type": "stream", |
| 86 | + "text": [ |
| 87 | + "[\n", |
| 88 | + " {\n", |
| 89 | + " \"command\": \"pip install sklearn\",\n", |
| 90 | + " \"step\": \"install sklearn\"\n", |
| 91 | + " },\n", |
| 92 | + " {\n", |
| 93 | + " \"command\": \"pip install numpy==1.23.5\",\n", |
| 94 | + " \"step\": \"install numpy\"\n", |
| 95 | + " },\n", |
| 96 | + " {\n", |
| 97 | + " \"command\": \"pip install pandas==1.5.3\",\n", |
| 98 | + " \"step\": \"install pandas\"\n", |
| 99 | + " }\n", |
| 100 | + "]\n" |
| 101 | + ] |
| 102 | + } |
| 103 | + ], |
| 104 | + "source": [ |
| 105 | + "import json\n", |
| 106 | + "print(json.dumps(requirements_json, sort_keys=True, indent=4))" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "markdown", |
| 111 | + "id": "f0b11bc8-a1f3-46ff-a232-90b93b1bdabc", |
| 112 | + "metadata": {}, |
| 113 | + "source": [ |
| 114 | + "Note how we have returned the `sklearn` import, which is attempting to refer to the scikit-learn package, but would fail to install the correct package via `pip install sklearn` and also could not collect a package version.\n", |
| 115 | + "\n", |
| 116 | + "Let's modify the name and add the version in Python and rewrite the requirements.json file to match." |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "code", |
| 121 | + "execution_count": 4, |
| 122 | + "id": "49721dc9-38e2-4d63-86e1-6555b364f4d6", |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [ |
| 125 | + { |
| 126 | + "name": "stdout", |
| 127 | + "output_type": "stream", |
| 128 | + "text": [ |
| 129 | + "[\n", |
| 130 | + " {\n", |
| 131 | + " \"command\": \"pip install scikit-learn==1.2.0\",\n", |
| 132 | + " \"step\": \"install scikit-learn\"\n", |
| 133 | + " },\n", |
| 134 | + " {\n", |
| 135 | + " \"command\": \"pip install numpy==1.23.5\",\n", |
| 136 | + " \"step\": \"install numpy\"\n", |
| 137 | + " },\n", |
| 138 | + " {\n", |
| 139 | + " \"command\": \"pip install pandas==1.5.3\",\n", |
| 140 | + " \"step\": \"install pandas\"\n", |
| 141 | + " }\n", |
| 142 | + "]\n" |
| 143 | + ] |
| 144 | + } |
| 145 | + ], |
| 146 | + "source": [ |
| 147 | + "scikit_learn_install = {\n", |
| 148 | + " \"command\": \"pip install scikit-learn==1.2.0\",\n", |
| 149 | + " \"step\": \"install scikit-learn\"\n", |
| 150 | + "}\n", |
| 151 | + "requirements_json[0].update(scikit_learn_install)\n", |
| 152 | + "print(json.dumps(requirements_json, sort_keys=True, indent=4))" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": 5, |
| 158 | + "id": "90da05c4-cd05-423d-8626-97125937f72b", |
| 159 | + "metadata": {}, |
| 160 | + "outputs": [], |
| 161 | + "source": [ |
| 162 | + "with open(Path(model_dir) / \"requirements.json\", \"w\") as req_file:\n", |
| 163 | + " req_file.write(json.dumps(requirements_json, indent=4))" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "markdown", |
| 168 | + "id": "53e5f3ca-f990-4ca7-9e92-2505087ff985", |
| 169 | + "metadata": {}, |
| 170 | + "source": [ |
| 171 | + "Now we have a complete and accurate requirements.json file for deploying models to containers in SAS Model Manager!" |
| 172 | + ] |
| 173 | + } |
| 174 | + ], |
| 175 | + "metadata": { |
| 176 | + "kernelspec": { |
| 177 | + "display_name": "dev-py38", |
| 178 | + "language": "python", |
| 179 | + "name": "dev-py38" |
| 180 | + }, |
| 181 | + "language_info": { |
| 182 | + "codemirror_mode": { |
| 183 | + "name": "ipython", |
| 184 | + "version": 3 |
| 185 | + }, |
| 186 | + "file_extension": ".py", |
| 187 | + "mimetype": "text/x-python", |
| 188 | + "name": "python", |
| 189 | + "nbconvert_exporter": "python", |
| 190 | + "pygments_lexer": "ipython3", |
| 191 | + "version": "3.8.16" |
| 192 | + } |
| 193 | + }, |
| 194 | + "nbformat": 4, |
| 195 | + "nbformat_minor": 5 |
| 196 | +} |
0 commit comments