|
| 1 | +use ops::Try; |
| 2 | +use iter::LoopState; |
| 3 | + |
| 4 | +/// An iterator able to yield elements from both ends. |
| 5 | +/// |
| 6 | +/// Something that implements `DoubleEndedIterator` has one extra capability |
| 7 | +/// over something that implements [`Iterator`]: the ability to also take |
| 8 | +/// `Item`s from the back, as well as the front. |
| 9 | +/// |
| 10 | +/// It is important to note that both back and forth work on the same range, |
| 11 | +/// and do not cross: iteration is over when they meet in the middle. |
| 12 | +/// |
| 13 | +/// In a similar fashion to the [`Iterator`] protocol, once a |
| 14 | +/// `DoubleEndedIterator` returns `None` from a `next_back()`, calling it again |
| 15 | +/// may or may not ever return `Some` again. `next()` and `next_back()` are |
| 16 | +/// interchangeable for this purpose. |
| 17 | +/// |
| 18 | +/// [`Iterator`]: trait.Iterator.html |
| 19 | +/// |
| 20 | +/// # Examples |
| 21 | +/// |
| 22 | +/// Basic usage: |
| 23 | +/// |
| 24 | +/// ``` |
| 25 | +/// let numbers = vec![1, 2, 3, 4, 5, 6]; |
| 26 | +/// |
| 27 | +/// let mut iter = numbers.iter(); |
| 28 | +/// |
| 29 | +/// assert_eq!(Some(&1), iter.next()); |
| 30 | +/// assert_eq!(Some(&6), iter.next_back()); |
| 31 | +/// assert_eq!(Some(&5), iter.next_back()); |
| 32 | +/// assert_eq!(Some(&2), iter.next()); |
| 33 | +/// assert_eq!(Some(&3), iter.next()); |
| 34 | +/// assert_eq!(Some(&4), iter.next()); |
| 35 | +/// assert_eq!(None, iter.next()); |
| 36 | +/// assert_eq!(None, iter.next_back()); |
| 37 | +/// ``` |
| 38 | +#[stable(feature = "rust1", since = "1.0.0")] |
| 39 | +pub trait DoubleEndedIterator: Iterator { |
| 40 | + /// Removes and returns an element from the end of the iterator. |
| 41 | + /// |
| 42 | + /// Returns `None` when there are no more elements. |
| 43 | + /// |
| 44 | + /// The [trait-level] docs contain more details. |
| 45 | + /// |
| 46 | + /// [trait-level]: trait.DoubleEndedIterator.html |
| 47 | + /// |
| 48 | + /// # Examples |
| 49 | + /// |
| 50 | + /// Basic usage: |
| 51 | + /// |
| 52 | + /// ``` |
| 53 | + /// let numbers = vec![1, 2, 3, 4, 5, 6]; |
| 54 | + /// |
| 55 | + /// let mut iter = numbers.iter(); |
| 56 | + /// |
| 57 | + /// assert_eq!(Some(&1), iter.next()); |
| 58 | + /// assert_eq!(Some(&6), iter.next_back()); |
| 59 | + /// assert_eq!(Some(&5), iter.next_back()); |
| 60 | + /// assert_eq!(Some(&2), iter.next()); |
| 61 | + /// assert_eq!(Some(&3), iter.next()); |
| 62 | + /// assert_eq!(Some(&4), iter.next()); |
| 63 | + /// assert_eq!(None, iter.next()); |
| 64 | + /// assert_eq!(None, iter.next_back()); |
| 65 | + /// ``` |
| 66 | + #[stable(feature = "rust1", since = "1.0.0")] |
| 67 | + fn next_back(&mut self) -> Option<Self::Item>; |
| 68 | + |
| 69 | + /// Returns the `n`th element from the end of the iterator. |
| 70 | + /// |
| 71 | + /// This is essentially the reversed version of [`nth`]. Although like most indexing |
| 72 | + /// operations, the count starts from zero, so `nth_back(0)` returns the first value fro |
| 73 | + /// the end, `nth_back(1)` the second, and so on. |
| 74 | + /// |
| 75 | + /// Note that all elements between the end and the returned element will be |
| 76 | + /// consumed, including the returned element. This also means that calling |
| 77 | + /// `nth_back(0)` multiple times on the same iterator will return different |
| 78 | + /// elements. |
| 79 | + /// |
| 80 | + /// `nth_back()` will return [`None`] if `n` is greater than or equal to the length of the |
| 81 | + /// iterator. |
| 82 | + /// |
| 83 | + /// [`None`]: ../../std/option/enum.Option.html#variant.None |
| 84 | + /// [`nth`]: ../../std/iter/trait.Iterator.html#method.nth |
| 85 | + /// |
| 86 | + /// # Examples |
| 87 | + /// |
| 88 | + /// Basic usage: |
| 89 | + /// |
| 90 | + /// ``` |
| 91 | + /// #![feature(iter_nth_back)] |
| 92 | + /// let a = [1, 2, 3]; |
| 93 | + /// assert_eq!(a.iter().nth_back(2), Some(&1)); |
| 94 | + /// ``` |
| 95 | + /// |
| 96 | + /// Calling `nth_back()` multiple times doesn't rewind the iterator: |
| 97 | + /// |
| 98 | + /// ``` |
| 99 | + /// #![feature(iter_nth_back)] |
| 100 | + /// let a = [1, 2, 3]; |
| 101 | + /// |
| 102 | + /// let mut iter = a.iter(); |
| 103 | + /// |
| 104 | + /// assert_eq!(iter.nth_back(1), Some(&2)); |
| 105 | + /// assert_eq!(iter.nth_back(1), None); |
| 106 | + /// ``` |
| 107 | + /// |
| 108 | + /// Returning `None` if there are less than `n + 1` elements: |
| 109 | + /// |
| 110 | + /// ``` |
| 111 | + /// #![feature(iter_nth_back)] |
| 112 | + /// let a = [1, 2, 3]; |
| 113 | + /// assert_eq!(a.iter().nth_back(10), None); |
| 114 | + /// ``` |
| 115 | + #[inline] |
| 116 | + #[unstable(feature = "iter_nth_back", issue = "56995")] |
| 117 | + fn nth_back(&mut self, mut n: usize) -> Option<Self::Item> { |
| 118 | + for x in self.rev() { |
| 119 | + if n == 0 { return Some(x) } |
| 120 | + n -= 1; |
| 121 | + } |
| 122 | + None |
| 123 | + } |
| 124 | + |
| 125 | + /// This is the reverse version of [`try_fold()`]: it takes elements |
| 126 | + /// starting from the back of the iterator. |
| 127 | + /// |
| 128 | + /// [`try_fold()`]: trait.Iterator.html#method.try_fold |
| 129 | + /// |
| 130 | + /// # Examples |
| 131 | + /// |
| 132 | + /// Basic usage: |
| 133 | + /// |
| 134 | + /// ``` |
| 135 | + /// let a = ["1", "2", "3"]; |
| 136 | + /// let sum = a.iter() |
| 137 | + /// .map(|&s| s.parse::<i32>()) |
| 138 | + /// .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y))); |
| 139 | + /// assert_eq!(sum, Ok(6)); |
| 140 | + /// ``` |
| 141 | + /// |
| 142 | + /// Short-circuiting: |
| 143 | + /// |
| 144 | + /// ``` |
| 145 | + /// let a = ["1", "rust", "3"]; |
| 146 | + /// let mut it = a.iter(); |
| 147 | + /// let sum = it |
| 148 | + /// .by_ref() |
| 149 | + /// .map(|&s| s.parse::<i32>()) |
| 150 | + /// .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y))); |
| 151 | + /// assert!(sum.is_err()); |
| 152 | + /// |
| 153 | + /// // Because it short-circuited, the remaining elements are still |
| 154 | + /// // available through the iterator. |
| 155 | + /// assert_eq!(it.next_back(), Some(&"1")); |
| 156 | + /// ``` |
| 157 | + #[inline] |
| 158 | + #[stable(feature = "iterator_try_fold", since = "1.27.0")] |
| 159 | + fn try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R |
| 160 | + where |
| 161 | + Self: Sized, |
| 162 | + F: FnMut(B, Self::Item) -> R, |
| 163 | + R: Try<Ok=B> |
| 164 | + { |
| 165 | + let mut accum = init; |
| 166 | + while let Some(x) = self.next_back() { |
| 167 | + accum = f(accum, x)?; |
| 168 | + } |
| 169 | + Try::from_ok(accum) |
| 170 | + } |
| 171 | + |
| 172 | + /// An iterator method that reduces the iterator's elements to a single, |
| 173 | + /// final value, starting from the back. |
| 174 | + /// |
| 175 | + /// This is the reverse version of [`fold()`]: it takes elements starting from |
| 176 | + /// the back of the iterator. |
| 177 | + /// |
| 178 | + /// `rfold()` takes two arguments: an initial value, and a closure with two |
| 179 | + /// arguments: an 'accumulator', and an element. The closure returns the value that |
| 180 | + /// the accumulator should have for the next iteration. |
| 181 | + /// |
| 182 | + /// The initial value is the value the accumulator will have on the first |
| 183 | + /// call. |
| 184 | + /// |
| 185 | + /// After applying this closure to every element of the iterator, `rfold()` |
| 186 | + /// returns the accumulator. |
| 187 | + /// |
| 188 | + /// This operation is sometimes called 'reduce' or 'inject'. |
| 189 | + /// |
| 190 | + /// Folding is useful whenever you have a collection of something, and want |
| 191 | + /// to produce a single value from it. |
| 192 | + /// |
| 193 | + /// [`fold()`]: trait.Iterator.html#method.fold |
| 194 | + /// |
| 195 | + /// # Examples |
| 196 | + /// |
| 197 | + /// Basic usage: |
| 198 | + /// |
| 199 | + /// ``` |
| 200 | + /// let a = [1, 2, 3]; |
| 201 | + /// |
| 202 | + /// // the sum of all of the elements of a |
| 203 | + /// let sum = a.iter() |
| 204 | + /// .rfold(0, |acc, &x| acc + x); |
| 205 | + /// |
| 206 | + /// assert_eq!(sum, 6); |
| 207 | + /// ``` |
| 208 | + /// |
| 209 | + /// This example builds a string, starting with an initial value |
| 210 | + /// and continuing with each element from the back until the front: |
| 211 | + /// |
| 212 | + /// ``` |
| 213 | + /// let numbers = [1, 2, 3, 4, 5]; |
| 214 | + /// |
| 215 | + /// let zero = "0".to_string(); |
| 216 | + /// |
| 217 | + /// let result = numbers.iter().rfold(zero, |acc, &x| { |
| 218 | + /// format!("({} + {})", x, acc) |
| 219 | + /// }); |
| 220 | + /// |
| 221 | + /// assert_eq!(result, "(1 + (2 + (3 + (4 + (5 + 0)))))"); |
| 222 | + /// ``` |
| 223 | + #[inline] |
| 224 | + #[stable(feature = "iter_rfold", since = "1.27.0")] |
| 225 | + fn rfold<B, F>(mut self, accum: B, mut f: F) -> B |
| 226 | + where |
| 227 | + Self: Sized, |
| 228 | + F: FnMut(B, Self::Item) -> B, |
| 229 | + { |
| 230 | + self.try_rfold(accum, move |acc, x| Ok::<B, !>(f(acc, x))).unwrap() |
| 231 | + } |
| 232 | + |
| 233 | + /// Searches for an element of an iterator from the back that satisfies a predicate. |
| 234 | + /// |
| 235 | + /// `rfind()` takes a closure that returns `true` or `false`. It applies |
| 236 | + /// this closure to each element of the iterator, starting at the end, and if any |
| 237 | + /// of them return `true`, then `rfind()` returns [`Some(element)`]. If they all return |
| 238 | + /// `false`, it returns [`None`]. |
| 239 | + /// |
| 240 | + /// `rfind()` is short-circuiting; in other words, it will stop processing |
| 241 | + /// as soon as the closure returns `true`. |
| 242 | + /// |
| 243 | + /// Because `rfind()` takes a reference, and many iterators iterate over |
| 244 | + /// references, this leads to a possibly confusing situation where the |
| 245 | + /// argument is a double reference. You can see this effect in the |
| 246 | + /// examples below, with `&&x`. |
| 247 | + /// |
| 248 | + /// [`Some(element)`]: ../../std/option/enum.Option.html#variant.Some |
| 249 | + /// [`None`]: ../../std/option/enum.Option.html#variant.None |
| 250 | + /// |
| 251 | + /// # Examples |
| 252 | + /// |
| 253 | + /// Basic usage: |
| 254 | + /// |
| 255 | + /// ``` |
| 256 | + /// let a = [1, 2, 3]; |
| 257 | + /// |
| 258 | + /// assert_eq!(a.iter().rfind(|&&x| x == 2), Some(&2)); |
| 259 | + /// |
| 260 | + /// assert_eq!(a.iter().rfind(|&&x| x == 5), None); |
| 261 | + /// ``` |
| 262 | + /// |
| 263 | + /// Stopping at the first `true`: |
| 264 | + /// |
| 265 | + /// ``` |
| 266 | + /// let a = [1, 2, 3]; |
| 267 | + /// |
| 268 | + /// let mut iter = a.iter(); |
| 269 | + /// |
| 270 | + /// assert_eq!(iter.rfind(|&&x| x == 2), Some(&2)); |
| 271 | + /// |
| 272 | + /// // we can still use `iter`, as there are more elements. |
| 273 | + /// assert_eq!(iter.next_back(), Some(&1)); |
| 274 | + /// ``` |
| 275 | + #[inline] |
| 276 | + #[stable(feature = "iter_rfind", since = "1.27.0")] |
| 277 | + fn rfind<P>(&mut self, mut predicate: P) -> Option<Self::Item> |
| 278 | + where |
| 279 | + Self: Sized, |
| 280 | + P: FnMut(&Self::Item) -> bool |
| 281 | + { |
| 282 | + self.try_rfold((), move |(), x| { |
| 283 | + if predicate(&x) { LoopState::Break(x) } |
| 284 | + else { LoopState::Continue(()) } |
| 285 | + }).break_value() |
| 286 | + } |
| 287 | +} |
| 288 | + |
| 289 | +#[stable(feature = "rust1", since = "1.0.0")] |
| 290 | +impl<'a, I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for &'a mut I { |
| 291 | + fn next_back(&mut self) -> Option<I::Item> { |
| 292 | + (**self).next_back() |
| 293 | + } |
| 294 | + fn nth_back(&mut self, n: usize) -> Option<I::Item> { |
| 295 | + (**self).nth_back(n) |
| 296 | + } |
| 297 | +} |
0 commit comments