|
1 |
| -use core::{f32, f64}; |
2 |
| - |
3 |
| -use super::scalbn; |
4 |
| - |
5 |
| -const ZEROINFNAN: i32 = 0x7ff - 0x3ff - 52 - 1; |
6 |
| - |
7 |
| -struct Num { |
8 |
| - m: u64, |
9 |
| - e: i32, |
10 |
| - sign: i32, |
11 |
| -} |
12 |
| - |
13 |
| -fn normalize(x: f64) -> Num { |
14 |
| - let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63 |
15 |
| - |
16 |
| - let mut ix: u64 = x.to_bits(); |
17 |
| - let mut e: i32 = (ix >> 52) as i32; |
18 |
| - let sign: i32 = e & 0x800; |
19 |
| - e &= 0x7ff; |
20 |
| - if e == 0 { |
21 |
| - ix = (x * x1p63).to_bits(); |
22 |
| - e = (ix >> 52) as i32 & 0x7ff; |
23 |
| - e = if e != 0 { e - 63 } else { 0x800 }; |
24 |
| - } |
25 |
| - ix &= (1 << 52) - 1; |
26 |
| - ix |= 1 << 52; |
27 |
| - ix <<= 1; |
28 |
| - e -= 0x3ff + 52 + 1; |
29 |
| - Num { m: ix, e, sign } |
30 |
| -} |
31 |
| - |
32 |
| -#[inline] |
33 |
| -fn mul(x: u64, y: u64) -> (u64, u64) { |
34 |
| - let t = (x as u128).wrapping_mul(y as u128); |
35 |
| - ((t >> 64) as u64, t as u64) |
36 |
| -} |
37 |
| - |
38 |
| -/// Floating multiply add (f64) |
| 1 | +/// Fused multiply add (f64) |
39 | 2 | ///
|
40 |
| -/// Computes `(x*y)+z`, rounded as one ternary operation: |
41 |
| -/// Computes the value (as if) to infinite precision and rounds once to the result format, |
42 |
| -/// according to the rounding mode characterized by the value of FLT_ROUNDS. |
| 3 | +/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision). |
43 | 4 | #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
|
44 | 5 | pub fn fma(x: f64, y: f64, z: f64) -> f64 {
|
45 |
| - let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63 |
46 |
| - let x0_ffffff8p_63 = f64::from_bits(0x3bfffffff0000000); // 0x0.ffffff8p-63 |
47 |
| - |
48 |
| - /* normalize so top 10bits and last bit are 0 */ |
49 |
| - let nx = normalize(x); |
50 |
| - let ny = normalize(y); |
51 |
| - let nz = normalize(z); |
52 |
| - |
53 |
| - if nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN { |
54 |
| - return x * y + z; |
55 |
| - } |
56 |
| - if nz.e >= ZEROINFNAN { |
57 |
| - if nz.e > ZEROINFNAN { |
58 |
| - /* z==0 */ |
59 |
| - return x * y + z; |
60 |
| - } |
61 |
| - return z; |
62 |
| - } |
63 |
| - |
64 |
| - /* mul: r = x*y */ |
65 |
| - let zhi: u64; |
66 |
| - let zlo: u64; |
67 |
| - let (mut rhi, mut rlo) = mul(nx.m, ny.m); |
68 |
| - /* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */ |
69 |
| - |
70 |
| - /* align exponents */ |
71 |
| - let mut e: i32 = nx.e + ny.e; |
72 |
| - let mut d: i32 = nz.e - e; |
73 |
| - /* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */ |
74 |
| - if d > 0 { |
75 |
| - if d < 64 { |
76 |
| - zlo = nz.m << d; |
77 |
| - zhi = nz.m >> (64 - d); |
78 |
| - } else { |
79 |
| - zlo = 0; |
80 |
| - zhi = nz.m; |
81 |
| - e = nz.e - 64; |
82 |
| - d -= 64; |
83 |
| - if d == 0 { |
84 |
| - } else if d < 64 { |
85 |
| - rlo = (rhi << (64 - d)) | (rlo >> d) | ((rlo << (64 - d)) != 0) as u64; |
86 |
| - rhi = rhi >> d; |
87 |
| - } else { |
88 |
| - rlo = 1; |
89 |
| - rhi = 0; |
90 |
| - } |
91 |
| - } |
92 |
| - } else { |
93 |
| - zhi = 0; |
94 |
| - d = -d; |
95 |
| - if d == 0 { |
96 |
| - zlo = nz.m; |
97 |
| - } else if d < 64 { |
98 |
| - zlo = (nz.m >> d) | ((nz.m << (64 - d)) != 0) as u64; |
99 |
| - } else { |
100 |
| - zlo = 1; |
101 |
| - } |
102 |
| - } |
103 |
| - |
104 |
| - /* add */ |
105 |
| - let mut sign: i32 = nx.sign ^ ny.sign; |
106 |
| - let samesign: bool = (sign ^ nz.sign) == 0; |
107 |
| - let mut nonzero: i32 = 1; |
108 |
| - if samesign { |
109 |
| - /* r += z */ |
110 |
| - rlo = rlo.wrapping_add(zlo); |
111 |
| - rhi += zhi + (rlo < zlo) as u64; |
112 |
| - } else { |
113 |
| - /* r -= z */ |
114 |
| - let (res, borrow) = rlo.overflowing_sub(zlo); |
115 |
| - rlo = res; |
116 |
| - rhi = rhi.wrapping_sub(zhi.wrapping_add(borrow as u64)); |
117 |
| - if (rhi >> 63) != 0 { |
118 |
| - rlo = (rlo as i64).wrapping_neg() as u64; |
119 |
| - rhi = (rhi as i64).wrapping_neg() as u64 - (rlo != 0) as u64; |
120 |
| - sign = (sign == 0) as i32; |
121 |
| - } |
122 |
| - nonzero = (rhi != 0) as i32; |
123 |
| - } |
124 |
| - |
125 |
| - /* set rhi to top 63bit of the result (last bit is sticky) */ |
126 |
| - if nonzero != 0 { |
127 |
| - e += 64; |
128 |
| - d = rhi.leading_zeros() as i32 - 1; |
129 |
| - /* note: d > 0 */ |
130 |
| - rhi = (rhi << d) | (rlo >> (64 - d)) | ((rlo << d) != 0) as u64; |
131 |
| - } else if rlo != 0 { |
132 |
| - d = rlo.leading_zeros() as i32 - 1; |
133 |
| - if d < 0 { |
134 |
| - rhi = (rlo >> 1) | (rlo & 1); |
135 |
| - } else { |
136 |
| - rhi = rlo << d; |
137 |
| - } |
138 |
| - } else { |
139 |
| - /* exact +-0 */ |
140 |
| - return x * y + z; |
141 |
| - } |
142 |
| - e -= d; |
143 |
| - |
144 |
| - /* convert to double */ |
145 |
| - let mut i: i64 = rhi as i64; /* i is in [1<<62,(1<<63)-1] */ |
146 |
| - if sign != 0 { |
147 |
| - i = -i; |
148 |
| - } |
149 |
| - let mut r: f64 = i as f64; /* |r| is in [0x1p62,0x1p63] */ |
150 |
| - |
151 |
| - if e < -1022 - 62 { |
152 |
| - /* result is subnormal before rounding */ |
153 |
| - if e == -1022 - 63 { |
154 |
| - let mut c: f64 = x1p63; |
155 |
| - if sign != 0 { |
156 |
| - c = -c; |
157 |
| - } |
158 |
| - if r == c { |
159 |
| - /* min normal after rounding, underflow depends |
160 |
| - on arch behaviour which can be imitated by |
161 |
| - a double to float conversion */ |
162 |
| - let fltmin: f32 = (x0_ffffff8p_63 * f32::MIN_POSITIVE as f64 * r) as f32; |
163 |
| - return f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * fltmin as f64; |
164 |
| - } |
165 |
| - /* one bit is lost when scaled, add another top bit to |
166 |
| - only round once at conversion if it is inexact */ |
167 |
| - if (rhi << 53) != 0 { |
168 |
| - i = ((rhi >> 1) | (rhi & 1) | (1 << 62)) as i64; |
169 |
| - if sign != 0 { |
170 |
| - i = -i; |
171 |
| - } |
172 |
| - r = i as f64; |
173 |
| - r = 2. * r - c; /* remove top bit */ |
174 |
| - |
175 |
| - /* raise underflow portably, such that it |
176 |
| - cannot be optimized away */ |
177 |
| - { |
178 |
| - let tiny: f64 = f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * r; |
179 |
| - r += (tiny * tiny) * (r - r); |
180 |
| - } |
181 |
| - } |
182 |
| - } else { |
183 |
| - /* only round once when scaled */ |
184 |
| - d = 10; |
185 |
| - i = (((rhi >> d) | ((rhi << (64 - d)) != 0) as u64) << d) as i64; |
186 |
| - if sign != 0 { |
187 |
| - i = -i; |
188 |
| - } |
189 |
| - r = i as f64; |
190 |
| - } |
191 |
| - } |
192 |
| - scalbn(r, e) |
| 6 | + return super::generic::fma(x, y, z); |
193 | 7 | }
|
194 | 8 |
|
195 | 9 | #[cfg(test)]
|
|
0 commit comments