|
| 1 | +/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */ |
| 2 | +/* |
| 3 | + * ==================================================== |
| 4 | + * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. |
| 5 | + * |
| 6 | + * Permission to use, copy, modify, and distribute this |
| 7 | + * software is freely granted, provided that this notice |
| 8 | + * is preserved. |
| 9 | + * ==================================================== |
| 10 | + */ |
| 11 | +/* pow(x,y) return x**y |
| 12 | + * |
| 13 | + * n |
| 14 | + * Method: Let x = 2 * (1+f) |
| 15 | + * 1. Compute and return log2(x) in two pieces: |
| 16 | + * log2(x) = w1 + w2, |
| 17 | + * where w1 has 53-24 = 29 bit trailing zeros. |
| 18 | + * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
| 19 | + * arithmetic, where |y'|<=0.5. |
| 20 | + * 3. Return x**y = 2**n*exp(y'*log2) |
| 21 | + * |
| 22 | + * Special cases: |
| 23 | + * 1. (anything) ** 0 is 1 |
| 24 | + * 2. 1 ** (anything) is 1 |
| 25 | + * 3. (anything except 1) ** NAN is NAN |
| 26 | + * 4. NAN ** (anything except 0) is NAN |
| 27 | + * 5. +-(|x| > 1) ** +INF is +INF |
| 28 | + * 6. +-(|x| > 1) ** -INF is +0 |
| 29 | + * 7. +-(|x| < 1) ** +INF is +0 |
| 30 | + * 8. +-(|x| < 1) ** -INF is +INF |
| 31 | + * 9. -1 ** +-INF is 1 |
| 32 | + * 10. +0 ** (+anything except 0, NAN) is +0 |
| 33 | + * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
| 34 | + * 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero |
| 35 | + * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero |
| 36 | + * 14. -0 ** (+odd integer) is -0 |
| 37 | + * 15. -0 ** (-odd integer) is -INF, raise divbyzero |
| 38 | + * 16. +INF ** (+anything except 0,NAN) is +INF |
| 39 | + * 17. +INF ** (-anything except 0,NAN) is +0 |
| 40 | + * 18. -INF ** (+odd integer) is -INF |
| 41 | + * 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer) |
| 42 | + * 20. (anything) ** 1 is (anything) |
| 43 | + * 21. (anything) ** -1 is 1/(anything) |
| 44 | + * 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
| 45 | + * 23. (-anything except 0 and inf) ** (non-integer) is NAN |
| 46 | + * |
| 47 | + * Accuracy: |
| 48 | + * pow(x,y) returns x**y nearly rounded. In particular |
| 49 | + * pow(integer,integer) |
| 50 | + * always returns the correct integer provided it is |
| 51 | + * representable. |
| 52 | + * |
| 53 | + * Constants : |
| 54 | + * The hexadecimal values are the intended ones for the following |
| 55 | + * constants. The decimal values may be used, provided that the |
| 56 | + * compiler will convert from decimal to binary accurately enough |
| 57 | + * to produce the hexadecimal values shown. |
| 58 | + */ |
| 59 | + |
| 60 | +// #include "libm.h" |
| 61 | + |
| 62 | +/* Concerns: |
| 63 | + * - Some constants are shared; DRY? |
| 64 | + * - FLT_EVAL_METHOD: the others sidestep this (epsilon or just always true in the case of hypot (#71)) |
| 65 | + */ |
| 66 | + |
| 67 | +use super::{fabs, scalbn, sqrt, with_set_low_word, with_set_high_word, get_high_word}; |
| 68 | + |
| 69 | +const BP: [f64; 2] = [1.0, 1.5]; |
| 70 | +const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */ |
| 71 | +const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */ |
| 72 | +const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */ |
| 73 | +const HUGE: f64 = 1.0e300; |
| 74 | +const TINY: f64 = 1.0e-300; |
| 75 | + |
| 76 | +// poly coefs for (3/2)*(log(x)-2s-2/3*s**3: |
| 77 | +const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */ |
| 78 | +const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */ |
| 79 | +const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */ |
| 80 | +const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */ |
| 81 | +const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */ |
| 82 | +const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */ |
| 83 | +const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */ |
| 84 | +const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */ |
| 85 | +const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */ |
| 86 | +const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */ |
| 87 | +const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */ |
| 88 | +const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */ |
| 89 | +const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */ |
| 90 | +const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */ |
| 91 | +const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */ |
| 92 | +const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */ |
| 93 | +const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */ |
| 94 | +const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/ |
| 95 | +const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */ |
| 96 | +const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/ |
| 97 | +const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/ |
| 98 | + |
| 99 | +#[inline] |
| 100 | +pub fn pow(x: f64, y: f64) -> f64 { |
| 101 | + let t1: f64; |
| 102 | + let t2: f64; |
| 103 | + |
| 104 | + let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32); |
| 105 | + let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32); |
| 106 | + |
| 107 | + let mut ix: i32 = (hx & 0x7fffffff) as i32; |
| 108 | + let iy: i32 = (hy & 0x7fffffff) as i32; |
| 109 | + |
| 110 | + /* x**0 = 1, even if x is NaN */ |
| 111 | + if ((iy as u32) | ly) == 0 { |
| 112 | + return 1.0; |
| 113 | + } |
| 114 | + |
| 115 | + /* 1**y = 1, even if y is NaN */ |
| 116 | + if hx == 0x3ff00000 && lx == 0 { |
| 117 | + return 1.0; |
| 118 | + } |
| 119 | + |
| 120 | + /* NaN if either arg is NaN */ |
| 121 | + if ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0) || |
| 122 | + iy > 0x7ff00000 || (iy == 0x7ff00000 && ly != 0) { |
| 123 | + return x + y; |
| 124 | + } |
| 125 | + |
| 126 | + /* determine if y is an odd int when x < 0 |
| 127 | + * yisint = 0 ... y is not an integer |
| 128 | + * yisint = 1 ... y is an odd int |
| 129 | + * yisint = 2 ... y is an even int |
| 130 | + */ |
| 131 | + let mut yisint: i32 = 0; |
| 132 | + let mut k: i32; |
| 133 | + let mut j: i32; |
| 134 | + if hx < 0 { |
| 135 | + if iy >= 0x43400000 { |
| 136 | + yisint = 2; /* even integer y */ |
| 137 | + } else if iy >= 0x3ff00000 { |
| 138 | + k = (iy >> 20) - 0x3ff; /* exponent */ |
| 139 | + |
| 140 | + if k > 20 { |
| 141 | + j = (ly >> (52 - k)) as i32; |
| 142 | + |
| 143 | + if (j << (52 - k)) == (ly as i32) { |
| 144 | + yisint = 2 - (j & 1); |
| 145 | + } |
| 146 | + } else if ly == 0 { |
| 147 | + j = iy >> (20 - k); |
| 148 | + |
| 149 | + if (j << (20 - k)) == iy { |
| 150 | + yisint = 2 - (j & 1); |
| 151 | + } |
| 152 | + } |
| 153 | + } |
| 154 | + } |
| 155 | + |
| 156 | + if ly == 0 { |
| 157 | + /* special value of y */ |
| 158 | + if iy == 0x7ff00000 { |
| 159 | + /* y is +-inf */ |
| 160 | + return if ((ix - 0x3ff00000) | (lx as i32)) == 0 { |
| 161 | + /* (-1)**+-inf is 1 */ |
| 162 | + 1.0 |
| 163 | + } else if ix >= 0x3ff00000 { |
| 164 | + /* (|x|>1)**+-inf = inf,0 */ |
| 165 | + if hy >= 0 { y } else { 0.0 } |
| 166 | + } else { |
| 167 | + /* (|x|<1)**+-inf = 0,inf */ |
| 168 | + if hy >= 0 { 0.0 } else { -y } |
| 169 | + }; |
| 170 | + } |
| 171 | + |
| 172 | + if iy == 0x3ff00000 { |
| 173 | + /* y is +-1 */ |
| 174 | + return if hy >= 0 { x } else { 1.0 / x }; |
| 175 | + } |
| 176 | + |
| 177 | + if hy == 0x40000000 { |
| 178 | + /* y is 2 */ |
| 179 | + return x * x; |
| 180 | + } |
| 181 | + |
| 182 | + if hy == 0x3fe00000 { |
| 183 | + /* y is 0.5 */ |
| 184 | + if hx >= 0 { |
| 185 | + /* x >= +0 */ |
| 186 | + return sqrt(x); |
| 187 | + } |
| 188 | + } |
| 189 | + } |
| 190 | + |
| 191 | + let mut ax: f64 = fabs(x); |
| 192 | + if lx == 0 { |
| 193 | + /* special value of x */ |
| 194 | + if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 { |
| 195 | + /* x is +-0,+-inf,+-1 */ |
| 196 | + let mut z: f64 = ax; |
| 197 | + |
| 198 | + if hy < 0 { |
| 199 | + /* z = (1/|x|) */ |
| 200 | + z = 1.0 / z; |
| 201 | + } |
| 202 | + |
| 203 | + if hx < 0 { |
| 204 | + if ((ix-0x3ff00000)|yisint) == 0 { |
| 205 | + z = (z - z) / (z - z); /* (-1)**non-int is NaN */ |
| 206 | + } else if yisint == 1 { |
| 207 | + z = -z; /* (x<0)**odd = -(|x|**odd) */ |
| 208 | + } |
| 209 | + } |
| 210 | + |
| 211 | + return z; |
| 212 | + } |
| 213 | + } |
| 214 | + |
| 215 | + let mut s: f64 = 1.0; /* sign of result */ |
| 216 | + if hx < 0 { |
| 217 | + if yisint == 0 { |
| 218 | + /* (x<0)**(non-int) is NaN */ |
| 219 | + return (x - x) / (x - x); |
| 220 | + } |
| 221 | + |
| 222 | + if yisint == 1 { |
| 223 | + /* (x<0)**(odd int) */ |
| 224 | + s = -1.0; |
| 225 | + } |
| 226 | + } |
| 227 | + |
| 228 | + /* |y| is HUGE */ |
| 229 | + if iy > 0x41e00000 { |
| 230 | + /* if |y| > 2**31 */ |
| 231 | + if iy > 0x43f00000 { |
| 232 | + /* if |y| > 2**64, must o/uflow */ |
| 233 | + if ix <= 0x3fefffff { |
| 234 | + return if hy < 0 { HUGE * HUGE } else { TINY * TINY }; |
| 235 | + } |
| 236 | + |
| 237 | + if ix >= 0x3ff00000 { |
| 238 | + return if hy > 0 { HUGE * HUGE } else { TINY * TINY }; |
| 239 | + } |
| 240 | + } |
| 241 | + |
| 242 | + /* over/underflow if x is not close to one */ |
| 243 | + if ix < 0x3fefffff { |
| 244 | + return if hy < 0 { s * HUGE * HUGE } else { s * TINY * TINY }; |
| 245 | + } |
| 246 | + if ix > 0x3ff00000 { |
| 247 | + return if hy > 0 { s * HUGE * HUGE } else { s * TINY * TINY }; |
| 248 | + } |
| 249 | + |
| 250 | + /* now |1-x| is TINY <= 2**-20, suffice to compute |
| 251 | + log(x) by x-x^2/2+x^3/3-x^4/4 */ |
| 252 | + let t: f64 = ax - 1.0; /* t has 20 trailing zeros */ |
| 253 | + let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); |
| 254 | + let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */ |
| 255 | + let v: f64 = t * IVLN2_L - w * IVLN2; |
| 256 | + t1 = with_set_low_word(u + v, 0); |
| 257 | + t2 = v - (t1 - u); |
| 258 | + } else { |
| 259 | + // double ss,s2,s_h,s_l,t_h,t_l; |
| 260 | + let mut n: i32 = 0; |
| 261 | + |
| 262 | + if ix < 0x00100000 { |
| 263 | + /* take care subnormal number */ |
| 264 | + ax *= TWO53; |
| 265 | + n -= 53; |
| 266 | + ix = get_high_word(ax) as i32; |
| 267 | + } |
| 268 | + |
| 269 | + n += (ix >> 20) - 0x3ff; |
| 270 | + j = ix & 0x000fffff; |
| 271 | + |
| 272 | + /* determine interval */ |
| 273 | + let k: i32; |
| 274 | + ix = j | 0x3ff00000; /* normalize ix */ |
| 275 | + if j <= 0x3988E { |
| 276 | + /* |x|<sqrt(3/2) */ |
| 277 | + k = 0; |
| 278 | + } |
| 279 | + else if j < 0xBB67A { |
| 280 | + /* |x|<sqrt(3) */ |
| 281 | + k = 1; |
| 282 | + } else { |
| 283 | + k = 0; |
| 284 | + n += 1; |
| 285 | + ix -= 0x00100000; |
| 286 | + } |
| 287 | + ax = with_set_high_word(ax, ix as u32); |
| 288 | + |
| 289 | + /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
| 290 | + let u: f64 = ax - BP[k as usize]; /* bp[0]=1.0, bp[1]=1.5 */ |
| 291 | + let v: f64 = 1.0 / (ax + BP[k as usize]); |
| 292 | + let ss: f64 = u * v; |
| 293 | + let s_h = with_set_low_word(ss, 0); |
| 294 | + |
| 295 | + /* t_h=ax+bp[k] High */ |
| 296 | + let t_h: f64 = with_set_high_word(0.0, |
| 297 | + ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18)); |
| 298 | + let t_l: f64 = ax - (t_h - BP[k as usize]); |
| 299 | + let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l); |
| 300 | + |
| 301 | + /* compute log(ax) */ |
| 302 | + let s2: f64 = ss * ss; |
| 303 | + let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 *(L3 + s2 *(L4 + s2 *(L5 + s2 * L6))))); |
| 304 | + r += s_l * (s_h + ss); |
| 305 | + let s2: f64 = s_h * s_h; |
| 306 | + let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0); |
| 307 | + let t_l: f64 = r - ((t_h - 3.0) - s2); |
| 308 | + |
| 309 | + /* u+v = ss*(1+...) */ |
| 310 | + let u: f64 = s_h * t_h; |
| 311 | + let v: f64 = s_l * t_h + t_l * ss; |
| 312 | + |
| 313 | + /* 2/(3log2)*(ss+...) */ |
| 314 | + let p_h: f64 = with_set_low_word(u + v, 0); |
| 315 | + let p_l = v - (p_h-u); |
| 316 | + let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */ |
| 317 | + let z_l: f64 = CP_L * p_h + p_l * CP + DP_L[k as usize]; |
| 318 | + |
| 319 | + /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
| 320 | + let t: f64 = n as f64; |
| 321 | + t1 = with_set_low_word(((z_h + z_l) + DP_H[k as usize]) + t, 0); |
| 322 | + t2 = z_l - (((t1 - t) - DP_H[k as usize]) - z_h); |
| 323 | + } |
| 324 | + |
| 325 | + /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
| 326 | + let y1: f64 = with_set_low_word(y, 0); |
| 327 | + let p_l: f64 = (y - y1) * t1 + y * t2; |
| 328 | + let mut p_h: f64 = y1 * t1; |
| 329 | + let z: f64 = p_l + p_h; |
| 330 | + let mut j: i32 = (z.to_bits() >> 32) as i32; |
| 331 | + let i: i32 = z.to_bits() as i32; |
| 332 | + // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32); |
| 333 | + |
| 334 | + if j >= 0x40900000 { |
| 335 | + /* z >= 1024 */ |
| 336 | + if (j - 0x40900000) | i != 0 { |
| 337 | + /* if z > 1024 */ |
| 338 | + return s * HUGE * HUGE; /* overflow */ |
| 339 | + } |
| 340 | + |
| 341 | + if p_l + OVT > z - p_h { |
| 342 | + return s * HUGE * HUGE; /* overflow */ |
| 343 | + } |
| 344 | + } else if (j & 0x7fffffff) >= 0x4090cc00 { |
| 345 | + /* z <= -1075 */ |
| 346 | + // FIXME: instead of abs(j) use unsigned j |
| 347 | + |
| 348 | + if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 { |
| 349 | + /* z < -1075 */ |
| 350 | + return s * TINY * TINY; /* underflow */ |
| 351 | + } |
| 352 | + |
| 353 | + if p_l <= z - p_h { |
| 354 | + return s * TINY * TINY; /* underflow */ |
| 355 | + } |
| 356 | + } |
| 357 | + |
| 358 | + /* compute 2**(p_h+p_l) */ |
| 359 | + let i: i32 = j & (0x7fffffff as i32); |
| 360 | + k = (i >> 20) - 0x3ff; |
| 361 | + let mut n: i32 = 0; |
| 362 | + |
| 363 | + if i > 0x3fe00000 { |
| 364 | + /* if |z| > 0.5, set n = [z+0.5] */ |
| 365 | + n = j + (0x00100000 >> (k + 1)); |
| 366 | + k = ((n&0x7fffffff) >> 20) - 0x3ff; /* new k for n */ |
| 367 | + let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32); |
| 368 | + n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); |
| 369 | + if j < 0 { |
| 370 | + n = -n; |
| 371 | + } |
| 372 | + p_h -= t; |
| 373 | + } |
| 374 | + |
| 375 | + let t: f64 = with_set_low_word(p_l + p_h, 0); |
| 376 | + let u: f64 = t * LG2_H; |
| 377 | + let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L; |
| 378 | + let mut z: f64 = u + v; |
| 379 | + let w: f64 = v - (z - u); |
| 380 | + let t: f64 = z * z; |
| 381 | + let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); |
| 382 | + let r: f64 = (z * t1) / (t1 - 2.0) - (w + z*w); |
| 383 | + z = 1.0 - (r - z); |
| 384 | + j = get_high_word(z) as i32; |
| 385 | + j += n << 20; |
| 386 | + |
| 387 | + if (j >> 20) <= 0 { |
| 388 | + /* subnormal output */ |
| 389 | + z = scalbn(z,n); |
| 390 | + } else { |
| 391 | + z = with_set_high_word(z, j as u32); |
| 392 | + } |
| 393 | + |
| 394 | + return s*z; |
| 395 | +} |
0 commit comments