-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathrun_experiment.py
143 lines (121 loc) · 6.46 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from pathlib import Path
import sys
import argparse
import ray
from functools import partial
import numpy as np
import torch
import pickle
import shutil
from rl.algos.ppo import PPO
from rl.envs.wrappers import SymmetricEnv
from rl.utils.eval import EvaluateEnv
def import_env(env_name_str):
if env_name_str=='jvrc_walk':
from envs.jvrc import JvrcWalkEnv as Env
elif env_name_str=='jvrc_step':
from envs.jvrc import JvrcStepEnv as Env
elif env_name_str=='h1':
from envs.h1 import H1Env as Env
else:
raise Exception("Check env name!")
return Env
def run_experiment(args):
# import the correct environment
Env = import_env(args.env)
# wrapper function for creating parallelized envs
env_fn = partial(Env, path_to_yaml=args.yaml)
_env = env_fn()
if not args.no_mirror:
try:
print("Wrapping in SymmetricEnv.")
env_fn = partial(SymmetricEnv, env_fn,
mirrored_obs=_env.robot.mirrored_obs,
mirrored_act=_env.robot.mirrored_acts,
clock_inds=_env.robot.clock_inds)
except AttributeError as e:
print("Warning! Cannot use SymmetricEnv.", e)
# Set up Parallelism
#os.environ['OMP_NUM_THREADS'] = '1' # [TODO: Is this needed?]
if not ray.is_initialized():
ray.init(num_cpus=args.num_procs)
# dump hyperparameters
Path.mkdir(args.logdir, parents=True, exist_ok=True)
pkl_path = Path(args.logdir, "experiment.pkl")
with open(pkl_path, 'wb') as f:
pickle.dump(args, f)
# copy config file
if args.yaml:
config_out_path = Path(args.logdir, "config.yaml")
shutil.copyfile(args.yaml, config_out_path)
algo = PPO(env_fn, args)
algo.train(env_fn, args.n_itr)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
if sys.argv[1] == 'train':
sys.argv.remove(sys.argv[1])
parser.add_argument("--env", required=True, type=str)
parser.add_argument("--logdir", default=Path("/tmp/logs"), type=Path, help="Path to save weights and logs")
parser.add_argument("--input-norm-steps", type=int, default=100000)
parser.add_argument("--n-itr", type=int, default=20000, help="Number of iterations of the learning algorithm")
parser.add_argument("--lr", type=float, default=1e-4, help="Adam learning rate") # Xie
parser.add_argument("--eps", type=float, default=1e-5, help="Adam epsilon (for numerical stability)")
parser.add_argument("--lam", type=float, default=0.95, help="Generalized advantage estimate discount")
parser.add_argument("--gamma", type=float, default=0.99, help="MDP discount")
parser.add_argument("--std-dev", type=float, default=0.223, help="Action noise for exploration")
parser.add_argument("--learn-std", action="store_true", help="Exploration noise will be learned")
parser.add_argument("--entropy-coeff", type=float, default=0.0, help="Coefficient for entropy regularization")
parser.add_argument("--clip", type=float, default=0.2, help="Clipping parameter for PPO surrogate loss")
parser.add_argument("--minibatch-size", type=int, default=64, help="Batch size for PPO updates")
parser.add_argument("--epochs", type=int, default=3, help="Number of optimization epochs per PPO update") #Xie
parser.add_argument("--use-gae", type=bool, default=True,help="Whether or not to calculate returns using Generalized Advantage Estimation")
parser.add_argument("--num-procs", type=int, default=12, help="Number of threads to train on")
parser.add_argument("--max-grad-norm", type=float, default=0.05, help="Value to clip gradients at")
parser.add_argument("--max-traj-len", type=int, default=400, help="Max episode horizon")
parser.add_argument("--no-mirror", required=False, action="store_true", help="to use SymmetricEnv")
parser.add_argument("--mirror-coeff", required=False, default=0.4, type=float, help="weight for mirror loss")
parser.add_argument("--eval-freq", required=False, default=100, type=int, help="Frequency of performing evaluation")
parser.add_argument("--continued", required=False, type=Path, help="path to pretrained weights")
parser.add_argument("--recurrent", required=False, action="store_true", help="use LSTM instead of FF")
parser.add_argument("--imitate", required=False, type=str, default=None, help="Policy to imitate")
parser.add_argument("--imitate-coeff", required=False, type=float, default=0.3, help="Coefficient for imitation loss")
parser.add_argument("--yaml", required=False, type=str, default=None, help="Path to config file passed to Env class")
args = parser.parse_args()
run_experiment(args)
elif sys.argv[1] == 'eval':
sys.argv.remove(sys.argv[1])
parser.add_argument("--path", required=False, type=Path, default=Path("/tmp/logs"),
help="Path to trained model dir")
parser.add_argument("--out-dir", required=False, type=Path, default=None,
help="Path to directory to save videos")
parser.add_argument("--ep-len", required=False, type=int, default=10,
help="Episode length to play (in seconds)")
args = parser.parse_args()
path_to_actor = ""
if args.path.is_file() and args.path.suffix==".pt":
path_to_actor = args.path
elif args.path.is_dir():
path_to_actor = Path(args.path, "actor.pt")
else:
raise Exception("Invalid path to actor module: ", args.path)
path_to_critic = Path(path_to_actor.parent, "critic" + str(path_to_actor).split('actor')[1])
path_to_pkl = Path(path_to_actor.parent, "experiment.pkl")
# load experiment args
run_args = pickle.load(open(path_to_pkl, "rb"))
# load trained policy
policy = torch.load(path_to_actor, weights_only=False)
critic = torch.load(path_to_critic, weights_only=False)
policy.eval()
critic.eval()
# load experiment args
run_args = pickle.load(open(path_to_pkl, "rb"))
# import the correct environment
Env = import_env(run_args.env)
if "yaml" in run_args and run_args.yaml is not None:
yaml_path = Path(run_args.yaml)
else:
yaml_path = None
env = partial(Env, yaml_path)()
# run
e = EvaluateEnv(env, policy, args)
e.run()