|
| 1 | +import numpy as np |
| 2 | +import torch |
| 3 | +import torch.nn.functional as F |
| 4 | +import json |
| 5 | +from torchvision import transforms |
| 6 | +from torchvision.utils import save_image, make_grid |
| 7 | + |
| 8 | +from modules import AutoEncoder, GatedPixelCNN |
| 9 | +from datasets import MiniImagenet |
| 10 | + |
| 11 | +from tensorboardX import SummaryWriter |
| 12 | + |
| 13 | +def train(data_loader, model, prior, optimizer, args, writer): |
| 14 | + for images, labels in data_loader: |
| 15 | + with torch.no_grad(): |
| 16 | + images = images.to(args.device) |
| 17 | + latents, _ = model.encode(images) |
| 18 | + latents = latents.detach() |
| 19 | + |
| 20 | + labels = labels.to(args.device) |
| 21 | + logits = prior(latents, labels) |
| 22 | + logits = logits.permute(0, 2, 3, 1).contiguous() |
| 23 | + |
| 24 | + optimizer.zero_grad() |
| 25 | + loss = F.cross_entropy(logits.view(-1, args.k), |
| 26 | + latents.view(-1)) |
| 27 | + loss.backward() |
| 28 | + |
| 29 | + # Logs |
| 30 | + writer.add_scalar('loss/train', loss.item(), args.steps) |
| 31 | + |
| 32 | + optimizer.step() |
| 33 | + args.steps += 1 |
| 34 | + |
| 35 | +def test(data_loader, model, prior, args, writer): |
| 36 | + with torch.no_grad(): |
| 37 | + loss = 0. |
| 38 | + for images, labels in data_loader: |
| 39 | + images = images.to(args.device) |
| 40 | + labels = labels.to(args.device) |
| 41 | + |
| 42 | + latents, _ = model.encode(images) |
| 43 | + latents = latents.detach() |
| 44 | + logits = prior(latents, labels) |
| 45 | + logits = logits.permute(0, 2, 3, 1).contiguous() |
| 46 | + loss += F.cross_entropy(logits.view(-1, args.k), |
| 47 | + latents.view(-1)) |
| 48 | + |
| 49 | + loss /= len(data_loader) |
| 50 | + |
| 51 | + # Logs |
| 52 | + writer.add_scalar('loss/valid', loss.item(), args.steps) |
| 53 | + |
| 54 | + return loss.item() |
| 55 | + |
| 56 | +def main(args): |
| 57 | + writer = SummaryWriter('./logs/{0}'.format(args.output_folder)) |
| 58 | + save_filename = './models/{0}/prior.pt'.format(args.output_folder) |
| 59 | + |
| 60 | + transform = transforms.Compose([ |
| 61 | + transforms.RandomResizedCrop(128), |
| 62 | + transforms.ToTensor(), |
| 63 | + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
| 64 | + ]) |
| 65 | + |
| 66 | + # Define the train, valid & test datasets |
| 67 | + train_dataset = MiniImagenet(args.data_folder, train=True, |
| 68 | + download=True, transform=transform) |
| 69 | + valid_dataset = MiniImagenet(args.data_folder, valid=True, |
| 70 | + download=True, transform=transform) |
| 71 | + test_dataset = MiniImagenet(args.data_folder, test=True, |
| 72 | + download=True, transform=transform) |
| 73 | + # Define the data loaders |
| 74 | + train_loader = torch.utils.data.DataLoader(train_dataset, |
| 75 | + batch_size=args.batch_size, shuffle=False, |
| 76 | + num_workers=args.num_workers, pin_memory=True) |
| 77 | + valid_loader = torch.utils.data.DataLoader(valid_dataset, |
| 78 | + batch_size=args.batch_size, shuffle=False, drop_last=True, |
| 79 | + num_workers=args.num_workers, pin_memory=True) |
| 80 | + test_loader = torch.utils.data.DataLoader(test_dataset, |
| 81 | + batch_size=16, shuffle=True) |
| 82 | + |
| 83 | + # Save the label encoder |
| 84 | + with open('./models/{0}/labels.json'.format(args.output_folder), 'w') as f: |
| 85 | + json.dump(train_dataset._label_encoder, f) |
| 86 | + |
| 87 | + # Fixed images for Tensorboard |
| 88 | + fixed_images, _ = next(iter(test_loader)) |
| 89 | + fixed_grid = make_grid(fixed_images, nrow=8, range=(-1, 1), normalize=True) |
| 90 | + writer.add_image('original', fixed_grid, 0) |
| 91 | + |
| 92 | + model = AutoEncoder(3, args.hidden_size_vae, args.k).to(args.device) |
| 93 | + with open(args.model, 'rb') as f: |
| 94 | + state_dict = torch.load(f) |
| 95 | + model.load_state_dict(state_dict) |
| 96 | + model.eval() |
| 97 | + |
| 98 | + prior = GatedPixelCNN(args.k, args.hidden_size_prior, |
| 99 | + args.num_layers, n_classes=len(train_dataset._label_encoder)).to(args.device) |
| 100 | + optimizer = torch.optim.Adam(prior.parameters(), lr=args.lr) |
| 101 | + |
| 102 | + best_loss = -1. |
| 103 | + for epoch in range(args.num_epochs): |
| 104 | + train(train_loader, model, prior, optimizer, args, writer) |
| 105 | + # The validation loss is not properly computed since |
| 106 | + # the classes in the train and valid splits of Mini-Imagenet |
| 107 | + # do not overlap. |
| 108 | + loss = test(valid_loader, model, prior, args, writer) |
| 109 | + |
| 110 | + if (epoch == 0) or (loss < best_loss): |
| 111 | + best_loss = loss |
| 112 | + with open(save_filename, 'wb') as f: |
| 113 | + torch.save(prior.state_dict(), f) |
| 114 | + |
| 115 | +if __name__ == '__main__': |
| 116 | + import argparse |
| 117 | + import os |
| 118 | + import multiprocessing as mp |
| 119 | + |
| 120 | + parser = argparse.ArgumentParser(description='PixelCNN Prior for VQ-VAE') |
| 121 | + |
| 122 | + # General |
| 123 | + parser.add_argument('--data-folder', type=str, |
| 124 | + help='name of the data folder') |
| 125 | + parser.add_argument('--model', type=str, |
| 126 | + help='filename containing the model') |
| 127 | + |
| 128 | + # Latent space |
| 129 | + parser.add_argument('--hidden-size-vae', type=int, default=256, |
| 130 | + help='size of the latent vectors (default: 256)') |
| 131 | + parser.add_argument('--hidden-size-prior', type=int, default=64, |
| 132 | + help='hidden size for the PixelCNN prior (default: 64)') |
| 133 | + parser.add_argument('--k', type=int, default=512, |
| 134 | + help='number of latent vectors (default: 512)') |
| 135 | + parser.add_argument('--num-layers', type=int, default=15, |
| 136 | + help='number of layers for the PixelCNN prior (default: 15)') |
| 137 | + |
| 138 | + # Optimization |
| 139 | + parser.add_argument('--batch-size', type=int, default=128, |
| 140 | + help='batch size (default: 128)') |
| 141 | + parser.add_argument('--num-epochs', type=int, default=100, |
| 142 | + help='number of epochs (default: 100)') |
| 143 | + parser.add_argument('--lr', type=float, default=3e-4, |
| 144 | + help='learning rate for Adam optimizer (default: 3e-4)') |
| 145 | + |
| 146 | + # Miscellaneous |
| 147 | + parser.add_argument('--output-folder', type=str, default='prior', |
| 148 | + help='name of the output folder (default: prior)') |
| 149 | + parser.add_argument('--num-workers', type=int, default=mp.cpu_count() - 1, |
| 150 | + help='number of workers for trajectories sampling (default: {0})'.format(mp.cpu_count() - 1)) |
| 151 | + parser.add_argument('--device', type=str, default='cpu', |
| 152 | + help='set the device (cpu or cuda, default: cpu)') |
| 153 | + |
| 154 | + args = parser.parse_args() |
| 155 | + |
| 156 | + # Create logs and models folder if they don't exist |
| 157 | + if not os.path.exists('./logs'): |
| 158 | + os.makedirs('./logs') |
| 159 | + if not os.path.exists('./models'): |
| 160 | + os.makedirs('./models') |
| 161 | + # Device |
| 162 | + args.device = torch.device(args.device |
| 163 | + if torch.cuda.is_available() else 'cpu') |
| 164 | + # Slurm |
| 165 | + if 'SLURM_JOB_ID' in os.environ: |
| 166 | + args.output_folder += '-{0}'.format(os.environ['SLURM_JOB_ID']) |
| 167 | + if not os.path.exists('./models/{0}'.format(args.output_folder)): |
| 168 | + os.makedirs('./models/{0}'.format(args.output_folder)) |
| 169 | + args.steps = 0 |
| 170 | + |
| 171 | + main(args) |
0 commit comments