|
| 1 | +--- |
| 2 | +categories: |
| 3 | +- docs |
| 4 | +- develop |
| 5 | +- stack |
| 6 | +- oss |
| 7 | +- rs |
| 8 | +- rc |
| 9 | +- oss |
| 10 | +- kubernetes |
| 11 | +- clients |
| 12 | +description: Learn how to index and query vector embeddings with Redis |
| 13 | +linkTitle: Index and query vectors |
| 14 | +title: Index and query vectors |
| 15 | +weight: 3 |
| 16 | +--- |
| 17 | + |
| 18 | +[Redis Query Engine]({{< relref "/develop/interact/search-and-query" >}}) |
| 19 | +lets you index vector fields in [hash]({{< relref "/develop/data-types/hashes" >}}) |
| 20 | +or [JSON]({{< relref "/develop/data-types/json" >}}) objects (see the |
| 21 | +[Vectors]({{< relref "/develop/interact/search-and-query/advanced-concepts/vectors" >}}) |
| 22 | +reference page for more information). |
| 23 | +Among other things, vector fields can store *text embeddings*, which are AI-generated vector |
| 24 | +representations of the semantic information in pieces of text. The |
| 25 | +[vector distance]({{< relref "/develop/interact/search-and-query/advanced-concepts/vectors#distance-metrics" >}}) |
| 26 | +between two embeddings indicates how similar they are semantically. By comparing the |
| 27 | +similarity of an embedding generated from some query text with embeddings stored in hash |
| 28 | +or JSON fields, Redis can retrieve documents that closely match the query in terms |
| 29 | +of their meaning. |
| 30 | + |
| 31 | +In the example below, we use the [HuggingFace](https://huggingface.co/) model |
| 32 | +[`all-mpnet-base-v2`](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) |
| 33 | +to generate the vector embeddings to store and index with Redis Query Engine. |
| 34 | + |
| 35 | +## Initialize |
| 36 | + |
| 37 | +If you are using [Maven](https://maven.apache.org/), add the following |
| 38 | +dependencies to your `pom.xml` file: |
| 39 | + |
| 40 | +```xml |
| 41 | +<dependency> |
| 42 | + <groupId>redis.clients</groupId> |
| 43 | + <artifactId>jedis</artifactId> |
| 44 | + <version>5.2.0</version> |
| 45 | +</dependency> |
| 46 | +<dependency> |
| 47 | + <groupId>ai.djl.huggingface</groupId> |
| 48 | + <artifactId>tokenizers</artifactId> |
| 49 | + <version>0.24.0</version> |
| 50 | +</dependency> |
| 51 | +``` |
| 52 | + |
| 53 | +If you are using [Gradle](https://gradle.org/), add the following |
| 54 | +dependencies to your `build.gradle` file: |
| 55 | + |
| 56 | +```bash |
| 57 | +implementation 'redis.clients:jedis:5.2.0' |
| 58 | +implementation 'ai.djl.huggingface:tokenizers:0.24.0' |
| 59 | +``` |
| 60 | + |
| 61 | +## Import dependencies |
| 62 | + |
| 63 | +Import the following classes in your source file: |
| 64 | + |
| 65 | +```java |
| 66 | +// Jedis client and query engine classes. |
| 67 | +import redis.clients.jedis.UnifiedJedis; |
| 68 | +import redis.clients.jedis.search.*; |
| 69 | +import redis.clients.jedis.search.schemafields.*; |
| 70 | +import redis.clients.jedis.search.schemafields.VectorField.VectorAlgorithm; |
| 71 | +import redis.clients.jedis.exceptions.JedisDataException; |
| 72 | + |
| 73 | +// Data manipulation. |
| 74 | +import java.nio.ByteBuffer; |
| 75 | +import java.nio.ByteOrder; |
| 76 | +import java.util.Map; |
| 77 | +import java.util.List; |
| 78 | + |
| 79 | +// Tokenizer to generate the vector embeddings. |
| 80 | +import ai.djl.huggingface.tokenizers.HuggingFaceTokenizer; |
| 81 | +``` |
| 82 | + |
| 83 | +## Define a helper method |
| 84 | + |
| 85 | +Our embedding model represents the vectors as an array of `long` integer values, |
| 86 | +but Redis Query Engine expects the vector components to be `float` values. |
| 87 | +Also, when you store vectors in a hash object, you must encode the vector |
| 88 | +array as a `byte` string. To simplify this situation, we declare a helper |
| 89 | +method `longsToFloatsByteString()` that takes the `long` array that the |
| 90 | +embedding model returns, converts it to an array of `float` values, and |
| 91 | +then encodes the `float` array as a `byte` string: |
| 92 | + |
| 93 | +```java |
| 94 | +public static byte[] longsToFloatsByteString(long[] input) { |
| 95 | + float[] floats = new float[input.length]; |
| 96 | + for (int i = 0; i < input.length; i++) { |
| 97 | + floats[i] = input[i]; |
| 98 | + } |
| 99 | + |
| 100 | + byte[] bytes = new byte[Float.BYTES * floats.length]; |
| 101 | + ByteBuffer |
| 102 | + .wrap(bytes) |
| 103 | + .order(ByteOrder.LITTLE_ENDIAN) |
| 104 | + .asFloatBuffer() |
| 105 | + .put(floats); |
| 106 | + return bytes; |
| 107 | +} |
| 108 | +``` |
| 109 | + |
| 110 | +## Create a tokenizer instance |
| 111 | + |
| 112 | +We will use the |
| 113 | +[`all-mpnet-base-v2`](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) |
| 114 | +tokenizer to generate the embeddings. The vectors that represent the |
| 115 | +embeddings have 768 components, regardless of the length of the input |
| 116 | +text. |
| 117 | + |
| 118 | +```java |
| 119 | +HuggingFaceTokenizer sentenceTokenizer = HuggingFaceTokenizer.newInstance( |
| 120 | + "sentence-transformers/all-mpnet-base-v2", |
| 121 | + Map.of("maxLength", "768", "modelMaxLength", "768") |
| 122 | +); |
| 123 | +``` |
| 124 | + |
| 125 | +## Create the index |
| 126 | + |
| 127 | +Connect to Redis and delete any index previously created with the |
| 128 | +name `vector_idx`. (The `ftDropIndex()` call throws an exception if |
| 129 | +the index doesn't already exist, which is why you need the |
| 130 | +`try...catch` block.) |
| 131 | + |
| 132 | +```java |
| 133 | +UnifiedJedis jedis = new UnifiedJedis("redis://localhost:6379"); |
| 134 | + |
| 135 | +try {jedis.ftDropIndex("vector_idx");} catch (JedisDataException j){} |
| 136 | +``` |
| 137 | + |
| 138 | +Next, we create the index. |
| 139 | +The schema in the example below includes three fields: the text content to index, a |
| 140 | +[tag]({{< relref "/develop/interact/search-and-query/advanced-concepts/tags" >}}) |
| 141 | +field to represent the "genre" of the text, and the embedding vector generated from |
| 142 | +the original text content. The `embedding` field specifies |
| 143 | +[HNSW]({{< relref "/develop/interact/search-and-query/advanced-concepts/vectors#hnsw-index" >}}) |
| 144 | +indexing, the |
| 145 | +[L2]({{< relref "/develop/interact/search-and-query/advanced-concepts/vectors#distance-metrics" >}}) |
| 146 | +vector distance metric, `Float32` values to represent the vector's components, |
| 147 | +and 768 dimensions, as required by the `all-mpnet-base-v2` embedding model. |
| 148 | + |
| 149 | +The `FTCreateParams` object specifies hash objects for storage and a |
| 150 | +prefix `doc:` that identifies the hash objects we want to index. |
| 151 | + |
| 152 | +```java |
| 153 | +SchemaField[] schema = { |
| 154 | + TextField.of("content"), |
| 155 | + TagField.of("genre"), |
| 156 | + VectorField.builder() |
| 157 | + .fieldName("embedding") |
| 158 | + .algorithm(VectorAlgorithm.HNSW) |
| 159 | + .attributes( |
| 160 | + Map.of( |
| 161 | + "TYPE", "FLOAT32", |
| 162 | + "DIM", 768, |
| 163 | + "DISTANCE_METRIC", "L2" |
| 164 | + ) |
| 165 | + ) |
| 166 | + .build() |
| 167 | +}; |
| 168 | + |
| 169 | +jedis.ftCreate("vector_idx", |
| 170 | + FTCreateParams.createParams() |
| 171 | + .addPrefix("doc:") |
| 172 | + .on(IndexDataType.HASH), |
| 173 | + schema |
| 174 | +); |
| 175 | +``` |
| 176 | + |
| 177 | +## Add data |
| 178 | + |
| 179 | +You can now supply the data objects, which will be indexed automatically |
| 180 | +when you add them with [`hset()`]({{< relref "/commands/hset" >}}), as long as |
| 181 | +you use the `doc:` prefix specified in the index definition. |
| 182 | + |
| 183 | +Use the `encode()` method of the `sentenceTokenizer` object |
| 184 | +as shown below to create the embedding that represents the `content` field. |
| 185 | +The `getIds()` method that follows `encode()` obtains the vector |
| 186 | +of `long` values which we then convert to a `float` array stored as a `byte` |
| 187 | +string using our helper method. Use the `byte` string representation when you are |
| 188 | +indexing hash objects (as we are here), but use the default list of `float` for |
| 189 | +JSON objects. Note that when we set the `embedding` field, we must use an overload |
| 190 | +of `hset()` that requires `byte` arrays for each of the key, the field name, and |
| 191 | +the value, which is why we include the `getBytes()` calls on the strings. |
| 192 | + |
| 193 | +```java |
| 194 | +String sentence1 = "That is a very happy person"; |
| 195 | +jedis.hset("doc:1", Map.of("content", sentence1, "genre", "persons")); |
| 196 | +jedis.hset( |
| 197 | + "doc:1".getBytes(), |
| 198 | + "embedding".getBytes(), |
| 199 | + longsToFloatsByteString(sentenceTokenizer.encode(sentence1).getIds()) |
| 200 | +); |
| 201 | + |
| 202 | +String sentence2 = "That is a happy dog"; |
| 203 | +jedis.hset("doc:2", Map.of("content", sentence2, "genre", "pets")); |
| 204 | +jedis.hset( |
| 205 | + "doc:2".getBytes(), |
| 206 | + "embedding".getBytes(), |
| 207 | + longsToFloatsByteString(sentenceTokenizer.encode(sentence2).getIds()) |
| 208 | +); |
| 209 | + |
| 210 | +String sentence3 = "Today is a sunny day"; |
| 211 | +jedis.hset("doc:3", Map.of("content", sentence3, "genre", "weather")); |
| 212 | +jedis.hset( |
| 213 | + "doc:3".getBytes(), |
| 214 | + "embedding".getBytes(), |
| 215 | + longsToFloatsByteString(sentenceTokenizer.encode(sentence3).getIds()) |
| 216 | +); |
| 217 | +``` |
| 218 | + |
| 219 | +## Run a query |
| 220 | + |
| 221 | +After you have created the index and added the data, you are ready to run a query. |
| 222 | +To do this, you must create another embedding vector from your chosen query |
| 223 | +text. Redis calculates the vector distance between the query vector and each |
| 224 | +embedding vector in the index as it runs the query. We can request the results to be |
| 225 | +sorted to rank them in order of ascending distance. |
| 226 | + |
| 227 | +The code below creates the query embedding using the `encode()` method, as with |
| 228 | +the indexing, and passes it as a parameter when the query executes (see |
| 229 | +[Vector search]({{< relref "/develop/interact/search-and-query/query/vector-search" >}}) |
| 230 | +for more information about using query parameters with embeddings). |
| 231 | +The query is a |
| 232 | +[K nearest neighbors (KNN)]({{< relref "/develop/interact/search-and-query/advanced-concepts/vectors#knn-vector-search" >}}) |
| 233 | +search that sorts the results in order of vector distance from the query vector. |
| 234 | + |
| 235 | +```java |
| 236 | +String sentence = "That is a happy person"; |
| 237 | + |
| 238 | +int K = 3; |
| 239 | +Query q = new Query("*=>[KNN $K @embedding $BLOB AS distance]") |
| 240 | + .returnFields("content", "distance") |
| 241 | + .addParam("K", K) |
| 242 | + .addParam( |
| 243 | + "BLOB", |
| 244 | + longsToFloatsByteString( |
| 245 | + sentenceTokenizer.encode(sentence)..getIds() |
| 246 | + ) |
| 247 | + ) |
| 248 | + .setSortBy("distance", true) |
| 249 | + .dialect(2); |
| 250 | + |
| 251 | +List<Document> docs = jedis.ftSearch("vector_idx", q).getDocuments(); |
| 252 | + |
| 253 | +for (Document doc: docs) { |
| 254 | + System.out.println( |
| 255 | + String.format( |
| 256 | + "ID: %s, Distance: %s, Content: %s", |
| 257 | + doc.getId(), |
| 258 | + doc.get("distance"), |
| 259 | + doc.get("content") |
| 260 | + ) |
| 261 | + ); |
| 262 | +} |
| 263 | +``` |
| 264 | + |
| 265 | +Assuming you have added the code from the steps above to your source file, |
| 266 | +it is now ready to run, but note that it may take a while to complete when |
| 267 | +you run it for the first time (which happens because the tokenizer must download the |
| 268 | +`all-mpnet-base-v2` model data before it can |
| 269 | +generate the embeddings). When you run the code, it outputs the following result text: |
| 270 | + |
| 271 | +``` |
| 272 | +Results: |
| 273 | +ID: doc:2, Distance: 1411344, Content: That is a happy dog |
| 274 | +ID: doc:1, Distance: 9301635, Content: That is a very happy person |
| 275 | +ID: doc:3, Distance: 67178800, Content: Today is a sunny day |
| 276 | +``` |
| 277 | + |
| 278 | +Note that the results are ordered according to the value of the `distance` |
| 279 | +field, with the lowest distance indicating the greatest similarity to the query. |
| 280 | +For this model, the text *"That is a happy dog"* |
| 281 | +is the result judged to be most similar in meaning to the query text |
| 282 | +*"That is a happy person"*. |
| 283 | + |
| 284 | +## Learn more |
| 285 | + |
| 286 | +See |
| 287 | +[Vector search]({{< relref "/develop/interact/search-and-query/query/vector-search" >}}) |
| 288 | +for more information about the indexing options, distance metrics, and query format |
| 289 | +for vectors. |
0 commit comments