Skip to content

Commit ae798de

Browse files
fixing relrefs
1 parent d107f91 commit ae798de

File tree

22 files changed

+74
-77
lines changed

22 files changed

+74
-77
lines changed

content/commands/ft.create/index.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -228,7 +228,7 @@ after the SCHEMA keyword, declares which fields to index:
228228

229229
- `GEO` - Allows radius range queries against the value (point) in this attribute. The value of the attribute must be a string containing a longitude (first) and latitude separated by a comma.
230230

231-
- `VECTOR` - Allows vector queries against the value in this attribute. This requires [query dialect 2]({{< relref "/develop/interact/search-and-query/advanced-concepts/dialects#dialect-2" >}}) or above (introduced in [RediSearch v2.4](https://github.com/RediSearch/RediSearch/releases/tag/v2.4.3)). For more information, see [Vector Fields]({{< relref "/develop/interact/search-and-query/advanced-concepts/vectors" >}}).
231+
- `VECTOR` - Allows vector queries against the value in this attribute. This requires [query dialect 2]({{< relref "/develop/interact/search-and-query/advanced-concepts/dialects#dialect-2" >}}) or above (introduced in [RediSearch v2.4](https://github.com/RediSearch/RediSearch/releases/tag/v2.4.3)). For more information, see [Vector Fields]({{< relref "/develop/ai/vector-fields" >}}).
232232

233233
- `GEOSHAPE`- Allows polygon queries against the value in this attribute. The value of the attribute must follow a [WKT notation](https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry) list of 2D points representing the polygon edges `POLYGON((x1 y1, x2 y2, ...)` separated by a comma. A `GEOSHAPE` field type can be followed by one of the following coordinate systems:
234234
- `SPHERICAL` for Geographic longitude and latitude coordinates

content/develop/ai/_index.md

+3-6
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ Redis stores and indexes vector embeddings that semantically represent unstructu
1515

1616
| Vector | RAG | RedisVL |
1717
| :-- | :-- | :-- |
18-
| {{<image filename="images/ai-cube.png" alt="AI Redis icon.">}}[Redis vector database quick start guide]({{< relref "/develop/get-started/vector-database" >}}) |{{<image filename="images/ai-brain.png" alt="AI Redis icon.">}} [Retrieval-Augmented Generation quick start guide]({{< relref "/develop/get-started/rag" >}}) | {{<image filename="images/ai-lib.png" alt="AI Redis icon.">}}[Redis vector Python client library documentation]({{< relref "/integrate/redisvl/" >}}) |
18+
| {{<image filename="images/ai-cube.png" alt="AI Redis icon.">}}[Redis vector database quick start guide]({{< relref "/develop/ai/vector-database" >}}) |{{<image filename="images/ai-brain.png" alt="AI Redis icon.">}} [Retrieval-Augmented Generation quick start guide]({{< relref "/develop/ai/rag" >}}) | {{<image filename="images/ai-lib.png" alt="AI Redis icon.">}}[Redis vector Python client library documentation]({{< relref "/integrate/redisvl/" >}}) |
1919

2020
#### Overview
2121

@@ -30,10 +30,7 @@ This page organized into a few sections depending on what you’re trying to do:
3030

3131
## How to's
3232

33-
1. [**Create a vector index**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#create-a-vector-index" >}}): Redis maintains a secondary index over your data with a defined schema (including vector fields and metadata). Redis supports [`FLAT`]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#flat-index" >}}) and [`HNSW`]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#hnsw-index" >}}) vector index types.
34-
1. [**Store and update vectors**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#store-and-update-vectors" >}}): Redis stores vectors and metadata in hashes or JSON objects.
35-
1. [**Search with vectors**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#search-with-vectors" >}}): Redis supports several advanced querying strategies with vector fields including k-nearest neighbor ([KNN]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#knn-vector-search" >}})), [vector range queries]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#vector-range-queries" >}}), and [metadata filters]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#filters" >}}).
36-
1. [**Configure vector queries at runtime**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#runtime-query-parameters" >}}). Select the best filter mode to optimize query execution.
33+
1. [**Create a vector index**]({{< relref "develop/ai/vector-fields" >}}): Redis maintains a secondary index over your data with a defined schema (including vector fields and metadata). Redis supports [`FLAT`]({{< relref "develop/ai/vector-fields#flat-index" >}}) and [`HNSW`]({{< relref "develop/ai/vector-fields#hnsw-index" >}}) vector index types.
3734

3835
#### Learn how to index and query vector embeddings
3936
* [redis-py (Python)]({{< relref "/develop/clients/redis-py/vecsearch" >}})
@@ -48,7 +45,7 @@ Learn to perform vector search and use gateways and semantic caching in your AI/
4845

4946
| Search | LLM memory | Semantic caching | Semantic routing | AI Gateways |
5047
| :-- | :-- | :-- | :-- | :-- |
51-
| {{<image filename="images/ai-search.png" alt="AI Redis icon.">}}[Vector search guide]({{< relref "/develop/interact/search-and-query/query/vector-search" >}}) | {{<image filename="images/ai-LLM-memory.png" alt="LLM memory icon.">}}[Store memory for LLMs](https://redis.io/blog/level-up-rag-apps-with-redis-vector-library/) | {{<image filename="images/ai-brain-2.png" alt="AI Redis icon.">}}[Semantic caching for faster, smarter LLM apps](https://redis.io/blog/what-is-semantic-caching) | {{<image filename="images/ai-semantic-routing.png" alt="Semantic routing icon.">}}[Semantic routing chooses the best tool](https://redis.io/blog/level-up-rag-apps-with-redis-vector-library/) | {{<image filename="images/ai-model.png" alt="AI Redis icon.">}}[Deploy an enhanced gateway with Redis](https://redis.io/blog/ai-gateways-what-are-they-how-can-you-deploy-an-enhanced-gateway-with-redis/) | {{<image filename="images/ai-brain-2.png" alt="AI Redis icon.">}}[Semantic caching for faster, smarter LLM apps](https://redis.io/blog/what-is-semantic-caching) |
48+
| {{<image filename="images/ai-search.png" alt="AI Redis icon.">}}[Vector search guide]({{< relref "/develop/ai/vector-search" >}}) | {{<image filename="images/ai-LLM-memory.png" alt="LLM memory icon.">}}[Store memory for LLMs](https://redis.io/blog/level-up-rag-apps-with-redis-vector-library/) | {{<image filename="images/ai-brain-2.png" alt="AI Redis icon.">}}[Semantic caching for faster, smarter LLM apps](https://redis.io/blog/what-is-semantic-caching) | {{<image filename="images/ai-semantic-routing.png" alt="Semantic routing icon.">}}[Semantic routing chooses the best tool](https://redis.io/blog/level-up-rag-apps-with-redis-vector-library/) | {{<image filename="images/ai-model.png" alt="AI Redis icon.">}}[Deploy an enhanced gateway with Redis](https://redis.io/blog/ai-gateways-what-are-they-how-can-you-deploy-an-enhanced-gateway-with-redis/) | {{<image filename="images/ai-brain-2.png" alt="AI Redis icon.">}}[Semantic caching for faster, smarter LLM apps](https://redis.io/blog/what-is-semantic-caching) |
5249

5350
## Quickstarts
5451

content/develop/ai/rag.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ weight: 4
1717
aliases: /develop/get-started/rag
1818
---
1919
### What is Retrieval Augmented Generation (RAG)?
20-
Large Language Models (LLMs) generate human-like text but are limited by the data they were trained on. RAG enhances LLMs by integrating them with external, domain-specific data stored in a Redis [vector database]({{< relref "/develop/get-started/vector-database" >}}).
20+
Large Language Models (LLMs) generate human-like text but are limited by the data they were trained on. RAG enhances LLMs by integrating them with external, domain-specific data stored in a Redis [vector database]({{< relref "/develop/ai/vector-database" >}}).
2121

2222
RAG involves three main steps:
2323

content/develop/ai/vector-database.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -187,7 +187,7 @@ Here is a breakdown of the `VECTOR` field definition:
187187
* `DIM 768`: The length or dimension of the embeddings, determined by the chosen embedding model.
188188
* `DISTANCE_METRIC COSINE`: The chosen distance function: [cosine distance](https://en.wikipedia.org/wiki/Cosine_similarity).
189189

190-
You can find further details about all these options in the [vector reference documentation]({{< relref "/develop/interact/search-and-query/advanced-concepts/vectors" >}}).
190+
You can find further details about all these options in the [vector reference documentation]({{< relref "/develop/ai/vector-fields" >}}).
191191

192192
### 2. Check the state of the index
193193

@@ -278,7 +278,7 @@ From the description, this bike is an excellent match for younger children, and
278278

279279
## Next steps
280280

281-
1. You can learn more about the query options, such as filters and vector range queries, by reading the [vector reference documentation]({{< relref "/develop/interact/search-and-query/advanced-concepts/vectors" >}}).
281+
1. You can learn more about the query options, such as filters and vector range queries, by reading the [vector reference documentation]({{< relref "/develop/ai/vector-fields" >}}).
282282
2. The complete [Redis Query Engine documentation]({{< relref "/develop/interact/search-and-query/" >}}) might be interesting for you.
283283
3. If you want to follow the code examples more interactively, then you can use the [Jupyter notebook](https://github.com/RedisVentures/redis-vss-getting-started/blob/main/vector_similarity_with_redis.ipynb) that inspired this quick start guide.
284284
4. If you want to see more advanced examples of a Redis vector database in action, visit the [Redis AI Resources](https://github.com/redis-developer/redis-ai-resources) page on GitHub.

content/develop/ai/vector-fields.md

+10-10
Original file line numberDiff line numberDiff line change
@@ -19,16 +19,16 @@ aliases: /develop/interact/search-and-query/advanced-concepts/vectors
1919

2020
Redis includes a [high-performance vector database](https://redis.io/blog/benchmarking-results-for-vector-databases/) that lets you perform semantic searches over vector embeddings. You can augment these searches with filtering over text, numerical, geospatial, and tag metadata.
2121

22-
To quickly get started, check out the [Redis vector quickstart guide]({{< relref "develop/get-started/vector-database" >}}) and the [Redis AI Resources](https://github.com/redis-developer/redis-ai-resources) Github repo.
22+
To quickly get started, check out the [Redis vector quickstart guide]({{< relref "develop/ai/vector-database" >}}) and the [Redis AI Resources](https://github.com/redis-developer/redis-ai-resources) Github repo.
2323

2424

2525
## Overview
2626

27-
1. [**Create a vector index**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#create-a-vector-index" >}}): Redis maintains a secondary index over your data with a defined schema (including vector fields and metadata). Redis supports [`FLAT`]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#flat-index" >}}) and [`HNSW`]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#hnsw-index" >}}) vector index types.
28-
1. [**Store and update vectors**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#store-and-update-vectors" >}}): Redis stores vectors and metadata in hashes or JSON objects.
29-
1. [**Search with vectors**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#search-with-vectors" >}}): Redis supports several advanced querying strategies with vector fields including k-nearest neighbor ([KNN]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#knn-vector-search" >}})), [vector range queries]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#vector-range-queries" >}}), and [metadata filters]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#filters" >}}).
30-
1. [**Configure vector queries at runtime**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#runtime-query-params" >}}).
31-
1. [**Vector search examples**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#vector-search-examples" >}}): Explore several vector search examples that cover different use cases and techniques.
27+
1. [**Create a vector index**]({{< relref "develop/ai/vector-fields#create-a-vector-index" >}}): Redis maintains a secondary index over your data with a defined schema (including vector fields and metadata). Redis supports [`FLAT`]({{< relref "develop/ai/vector-fields#flat-index" >}}) and [`HNSW`]({{< relref "develop/ai/vector-fields#hnsw-index" >}}) vector index types.
28+
1. [**Store and update vectors**]({{< relref "develop/ai/vector-fields#store-and-update-vectors" >}}): Redis stores vectors and metadata in hashes or JSON objects.
29+
1. [**Search with vectors**]({{< relref "develop/ai/vector-fields#search-with-vectors" >}}): Redis supports several advanced querying strategies with vector fields including k-nearest neighbor ([KNN]({{< relref "develop/ai/vector-fields#knn-vector-search" >}})), [vector range queries]({{< relref "develop/ai/vector-fields#vector-range-queries" >}}), and [metadata filters]({{< relref "develop/ai/vector-fields#filters" >}}).
30+
1. [**Configure vector queries at runtime**]({{< relref "develop/ai/vector-fields#runtime-query-params" >}}).
31+
1. [**Vector search examples**]({{< relref "develop/ai/vector-fields#vector-search-examples" >}}): Explore several vector search examples that cover different use cases and techniques.
3232

3333
## Create a vector index
3434

@@ -231,11 +231,11 @@ FT.SEARCH <index_name>
231231
| Parameter | Description |
232232
|:------------------|:--------------------------------------------------------------------------------------------------|
233233
| `index_name` | Name of the index. |
234-
| `primary_filter_query` | [Filter]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#filters" >}}) criteria. Use `*` when no filters are required. |
234+
| `primary_filter_query` | [Filter]({{< relref "develop/ai/vector-fields#filters" >}}) criteria. Use `*` when no filters are required. |
235235
| `top_k` | Number of nearest neighbors to fetch from the index. |
236236
| `vector_field` | Name of the vector field to search against. |
237237
| `vector_blob_param` | The query vector, passed in as a blob of raw bytes. The blob's byte size must match the vector field's dimensions and type. |
238-
| `vector_query_params` (optional) | An optional section for marking one or more vector query parameters passed through the `PARAMS` section. Valid parameters should be provided as key-value pairs. See which [runtime query params]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#runtime-query-params" >}}) are supported for each vector index type. |
238+
| `vector_query_params` (optional) | An optional section for marking one or more vector query parameters passed through the `PARAMS` section. Valid parameters should be provided as key-value pairs. See which [runtime query params]({{< relref "develop/ai/vector-fields#runtime-query-params" >}}) are supported for each vector index type. |
239239
| `distance_field` (optional) | The optional distance field name used in the response and/or for sorting. By default, the distance field name is `__<vector_field>_score` and it can be used for sorting without using `AS <distance_field>` in the query. |
240240
| `vector_query_params_count` | The number of vector query parameters. |
241241
| `vector_query_param_name` | The name of the vector query parameter. |
@@ -282,7 +282,7 @@ FT.SEARCH <index_name>
282282
| `vector_field` | Name of the vector field in the index. |
283283
| `radius` or `radius_param` | The maximum semantic distance allowed between the query vector and indexed vectors. You can provide the value directly in the query, passed to the `PARAMS` section, or as a query attribute.
284284
| `vector_blob_param` | The query vector, passed in as a blob of raw bytes. The blob's byte size must match the vector field's dimensions and type. |
285-
| `vector_query_params` (optional) | An optional section for marking one or more vector query parameters passed through the `PARAMS` section. Valid parameters should be provided as key-value pairs. See which [runtime query params]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#runtime-query-params" >}}) are supported for each vector index type. |
285+
| `vector_query_params` (optional) | An optional section for marking one or more vector query parameters passed through the `PARAMS` section. Valid parameters should be provided as key-value pairs. See which [runtime query params]({{< relref "develop/ai/vector-fields#runtime-query-params" >}}) are supported for each vector index type. |
286286
| `vector_query_params_count` | The number of vector query parameters. |
287287
| `vector_query_param_name` | The name of the vector query parameter. |
288288
| `vector_query_param_value` | The value of the vector query parameter. |
@@ -393,7 +393,7 @@ Optional runtime parameters for HNSW indexes are:
393393

394394
## Vector search examples
395395

396-
Below are a number of examples to help you get started. For more comprehensive walkthroughs, see the [Redis vector quickstart guide]({{< relref "develop/get-started/vector-database" >}}) and the [Redis AI Resources](https://github.com/redis-developer/redis-ai-resources) Github repo.
396+
Below are a number of examples to help you get started. For more comprehensive walkthroughs, see the [Redis vector quickstart guide]({{< relref "develop/ai/vector-database" >}}) and the [Redis AI Resources](https://github.com/redis-developer/redis-ai-resources) Github repo.
397397

398398
### KNN vector search examples
399399

content/develop/ai/vector-search.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ title: Vector search examples
1515
weight: 2
1616
---
1717

18-
This article gives you a good overview of how to perform vector search queries with Redis Stack. See the [Redis as a vector database quick start guide]({{< relref "/develop/get-started/vector-database" >}}) for more information about Redis as a vector database. You can also find more detailed information about all the parameters in the [vector reference documentation]({{< relref "/develop/interact/search-and-query/advanced-concepts/vectors" >}}).
18+
This article gives you a good overview of how to perform vector search queries with Redis Stack. See the [Redis as a vector database quick start guide]({{< relref "/develop/ai/vector-database" >}}) for more information about Redis as a vector database. You can also find more detailed information about all the parameters in the [vector reference documentation]({{< relref "/develop/ai/vector-fields" >}}).
1919

2020
A vector search query on a vector field allows you to find all vectors in a vector space that are close to a given vector. You can query for the k-nearest neighbors or vectors within a given radius.
2121

@@ -82,7 +82,7 @@ Here is a more detailed explanation of this query:
8282

8383
1. **Range query**: the syntax of a radius query is very similar to the regular range query, except for the keyword `VECTOR_RANGE`. You can also combine a vector radius query with other queries in the same way as regular range queries. See [combined queries article]({{< relref "/develop/interact/search-and-query/query/combined" >}}) for more details.
8484
2. **Additional step**: the `=>` arrow means that the range query is followed by evaluating additional parameters.
85-
3. **Range query parameters**: parameters such as `$YIELD_DISTANCE_AS` can be found in the [vectors reference documentation]({{< relref "/develop/interact/search-and-query/advanced-concepts/vectors" >}}).
85+
3. **Range query parameters**: parameters such as `$YIELD_DISTANCE_AS` can be found in the [vectors reference documentation]({{< relref "/develop/ai/vector-fields" >}}).
8686
4. **Vector binary data**: you need to use `PARAMS` to pass the binary representation of the vector.
8787
5. **Dialect**: vector search has been available since version two of the query dialect.
8888

0 commit comments

Comments
 (0)