You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: content/develop/ai/index.md
+25-15Lines changed: 25 additions & 15 deletions
Original file line number
Diff line number
Diff line change
@@ -12,38 +12,48 @@ weight: 40
12
12
---
13
13
Redis stores and indexes vector embeddings that semantically represent unstructured data including text passages, images, videos, or audio. Store vectors and the associated metadata within [hashes]({{< relref "/develop/data-types/hashes" >}}) or [JSON]({{< relref "/develop/data-types/json" >}}) documents for [indexing]({{< relref "/develop/interact/search-and-query/indexing" >}}) and [querying]({{< relref "/develop/interact/search-and-query/query" >}}).
1.[**Create a vector index**]({{< baseurl >}}/develop/interact/search-and-query/advanced-concepts/vectors#create-a-vector-index): Redis maintains a secondary index over your data with a defined schema (including vector fields and metadata). Redis supports [`FLAT`]({{< baseurl >}}/develop/interact/search-and-query/advanced-concepts/vectors#flat-index) and [`HNSW`]({{< baseurl >}}/develop/interact/search-and-query/advanced-concepts/vectors#hnsw-index) vector index types.
23
22
1.[**Store and update vectors**]({{< baseurl >}}/develop/interact/search-and-query/advanced-concepts/vectors#store-and-update-vectors): Redis stores vectors and metadata in hashes or JSON objects.
24
23
1.[**Search with vectors**]({{< baseurl >}}/develop/interact/search-and-query/advanced-concepts/vectors#search-with-vectors): Redis supports several advanced querying strategies with vector fields including k-nearest neighbor ([KNN]({{< baseurl >}}/develop/interact/search-and-query/advanced-concepts/vectors#knn-vector-search)), [vector range queries]({{< baseurl >}}/develop/interact/search-and-query/advanced-concepts/vectors#vector-range-queries), and [metadata filters]({{< baseurl >}}/develop/interact/search-and-query/advanced-concepts/vectors#filters).
25
-
1.[**Configure vector queries at runtime**]({{< baseurl >}}/develop/interact/search-and-query/advanced-concepts/vectors#runtime-query-parameters).
24
+
1.[**Configure vector queries at runtime**]({{< baseurl >}}/develop/interact/search-and-query/advanced-concepts/vectors#runtime-query-parameters). Select the best filter mode to optimize query execution.
26
25
27
-
## Resources
26
+
## Concepts
28
27
29
-
Learn to perform vector search and use Redis integrations in your AI/ML projects.
28
+
Learn to perform vector search and use gateways and semantic caching in your AI/ML projects.
30
29
31
-
| Search |Cloud Model Integration | Python Vector Library|
*[LangChain Redis Package: Smarter AI apps with advanced vector storage and faster caching](https://redis.io/blog/langchain-redis-partner-package/))
38
+
*[Redis Cloud available on Vercel](https://redis.io/blog/redis-cloud-now-available-on-vercel-marketplace/)
39
+
*[Create a Redis Cloud database with the Vercel integration]({{< relref "/operate/rc/cloud-integrations/vercel/" >}})
40
+
*[Building a RAG application with Redis and Spring AI](https://redis.io/blog/building-a-rag-application-with-redis-and-spring-ai/)
41
+
*[Deploy GenAI apps faster with Redis and NVIDIA NIM](https://redis.io/blog/use-redis-with-nvidia-nim-to-deploy-genai-apps-faster/)
42
+
*[Building LLM Applications with Kernel Memory and Redis](https://redis.io/blog/building-llm-applications-with-kernel-memory-and-redis/)
43
+
34
44
35
45
## Notebooks
36
46
37
47
Get started with the following Redis Python notebooks.
38
48
39
49
*[The place to start if you are brand new to Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/redis-intro/00_redis_intro.ipynb)
40
50
41
-
**Hybrid and vector search notebooks**
51
+
### Hybrid and vector search
42
52
*[Implementing hybrid search with Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/02_hybrid_search.ipynb)
43
53
*[Vector search with Redis Python client](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/00_redispy.ipynb)
44
54
*[Vector search with Redis Vector Library](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/01_redisvl.ipynb)
45
55
46
-
**RAG notebooks**
56
+
### RAG
47
57
*[RAG from scratch with the Redis Vector Library](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/01_redisvl.ipynb)
48
58
*[RAG using Redis and LangChain](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/02_langchain.ipynb)
49
59
*[RAG using Redis and LlamaIndex](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/03_llamaindex.ipynb)
@@ -52,19 +62,19 @@ Get started with the following Redis Python notebooks.
52
62
*[Utilize RAGAS framework to evaluate RAG performance](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/06_ragas_evaluation.ipynb)
53
63
*[Notebook for additional tips and techniques to improve RAG quality](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)
54
64
55
-
**LLM session management notebooks**
65
+
### LLM session management
56
66
*[LLM session manager with semantic similarity](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/llm-session-manager/00_llm_session_manager.ipynb)
57
67
*[Handle multiple simultaneous chats with one instance](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/llm-session-manager/01_multiple_sessions.ipynb)
58
68
59
-
**Semantic caching notebooks**
69
+
### Semantic caching
60
70
*[Build a semantic cache using the Doc2Cache framework and Llama3.1](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/doc2cache_llama3_1.ipynb)
61
71
*[Build a semantic cache with Redis and Google Gemini](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/semantic_caching_gemini.ipynb)
62
72
63
-
**Agent notebooks**
73
+
### Agent
64
74
*[Notebook to get started with lang-graph and agents](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb)
65
75
*[Notebook to get started with lang-graph and agents](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/01_crewai_langgraph_redis.ipynb)
66
76
67
-
**Recommendation systems notebooks**
77
+
## Recommendation systems
68
78
*[Intro content filtering example with redisvl](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/content_filtering.ipynb)
69
79
*[Intro collaborative filtering example with redisvl](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/collaborative_filtering.ipynb)
0 commit comments