Skip to content

Commit 4c97608

Browse files
Merge pull request #1441 from rinivasan-redis/patch-1
Update index.md to include updates from redis-ai-resources repo
2 parents 35e852d + 454af63 commit 4c97608

File tree

1 file changed

+20
-3
lines changed

1 file changed

+20
-3
lines changed

content/develop/ai/index.md

Lines changed: 20 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -53,6 +53,7 @@ Vector search retrieves results based on the similarity of high-dimensional nume
5353
* [Implementing hybrid search with Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/02_hybrid_search.ipynb)
5454
* [Vector search with Redis Python client](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/00_redispy.ipynb)
5555
* [Vector search with Redis Vector Library](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/01_redisvl.ipynb)
56+
* [Shows how to convert a float 32 index to float16 or integer data types](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/03_dtype_support.ipynb)
5657

5758
#### RAG
5859
Retrieval Augmented Generation (aka RAG) is a technique to enhance the ability of an LLM to respond to user queries. The retrieval part of RAG is supported by a vector database, which can return semantically relevant results to a user’s query, serving as contextual information to augment the generative capabilities of an LLM.
@@ -65,12 +66,14 @@ Retrieval Augmented Generation (aka RAG) is a technique to enhance the ability o
6566
* [Vector search with Azure](https://techcommunity.microsoft.com/blog/azuredevcommunityblog/vector-similarity-search-with-azure-cache-for-redis-enterprise/3822059)
6667
* [RAG with Spring AI](https://redis.io/blog/building-a-rag-application-with-redis-and-spring-ai/)
6768
* [RAG with Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main)
68-
* [Notebook for additional tips and techniques to improve RAG quality](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)
69+
* [Notebook for additional tips and techniques to improve RAG quality](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)
70+
* [Implement a simple RBAC policy with vector search using Redis](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/07_user_role_based_rag.ipynb)
6971

7072
#### Agents
7173
AI agents can act autonomously to plan and execute tasks for the user.
7274
* [Notebook to get started with LangGraph and agents](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb)
7375
* [Build a collaborative movie recommendation system using Redis for data storage, CrewAI for agent-based task execution, and LangGraph for workflow management.](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/01_crewai_langgraph_redis.ipynb)
76+
* [Full-Featured Agent Architecture](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/02_full_featured_agent.ipynb)
7477

7578
#### LLM memory
7679
LLMs are stateless. To maintain context within a conversation chat sessions must be stored and resent to the LLM. Redis manages the storage and retrieval of chat sessions to maintain context and conversational relevance.
@@ -81,14 +84,24 @@ LLMs are stateless. To maintain context within a conversation chat sessions must
8184
An estimated 31% of LLM queries are potentially redundant. Redis enables semantic caching to help cut down on LLM costs quickly.
8285
* [Build a semantic cache using the Doc2Cache framework and Llama3.1](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/doc2cache_llama3_1.ipynb)
8386
* [Build a semantic cache with Redis and Google Gemini](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/semantic_caching_gemini.ipynb)
87+
* [Optimize semantic cache threshold with RedisVL](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/02_semantic_cache_optimization.ipynb)
88+
89+
#### Semantic routing
90+
Routing is a simple and effective way of preventing misuses with your AI application or for creating branching logic between data sources etc.
91+
* [Simple examples of how to build an allow/block list router in addition to a multi-topic router](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-router/00_semantic_routing.ipynb)
92+
* [Use RouterThresholdOptimizer from redisvl to setup best router config](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-router/01_routing_optimization.ipynb)
8493

8594
#### Computer vision
8695
Build a facial recognition system using the Facenet embedding model and RedisVL.
8796
* [Facial recognition](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/computer-vision/00_facial_recognition_facenet.ipynb)
8897

8998
#### Recommendation systems
9099
* [Intro content filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/00_content_filtering.ipynb)
91-
* [Intro collaborative filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb)
100+
* [Intro collaborative filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb)
101+
* [Intro deep learning two tower example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/02_two_towers.ipynb)
102+
103+
#### Feature store
104+
* [Credit scoring system using Feast with Redis as the online store](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/feature-store/00_feast_credit_score.ipynb)
92105

93106
## Tutorials
94107
Need a deeper-dive through different use cases and topics?
@@ -97,10 +110,12 @@ Need a deeper-dive through different use cases and topics?
97110
* [Agentic RAG](https://github.com/redis-developer/agentic-rag) - A tutorial focused on agentic RAG with LlamaIndex and Amazon Bedrock
98111
* [RAG on Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main) - A RAG tutorial featuring Redis with Vertex AI
99112
* [RAG workbench](https://github.com/redis-developer/redis-rag-workbench) - A development playground for exploring RAG techniques with Redis
113+
* [ArXiv Chat](https://github.com/redis-developer/ArxivChatGuru) - Streamlit demo of RAG over ArXiv documents with Redis & OpenAI
100114

101-
#### Recommendation system
115+
#### Recommendations and search
102116
* [Recommendation systems w/ NVIDIA Merlin & Redis](https://github.com/redis-developer/redis-nvidia-recsys) - Three examples, each escalating in complexity, showcasing the process of building a realtime recsys with NVIDIA and Redis
103117
* [Redis product search](https://github.com/redis-developer/redis-product-search) - Build a real-time product search engine using features like full-text search, vector similarity, and real-time data updates
118+
* [ArXiv Search](https://github.com/redis-developer/redis-arxiv-search) - Full stack implementation of Redis with React FE
104119

105120
## Ecosystem integrations
106121

@@ -113,6 +128,8 @@ Need a deeper-dive through different use cases and topics?
113128
* [Deploy GenAI apps faster with Redis and NVIDIA NIM](https://redis.io/blog/use-redis-with-nvidia-nim-to-deploy-genai-apps-faster/)
114129
* [Building LLM Applications with Kernel Memory and Redis](https://redis.io/blog/building-llm-applications-with-kernel-memory-and-redis/)
115130
* [DocArray integration of Redis as a vector database by Jina AI](https://docs.docarray.org/user_guide/storing/index_redis/)
131+
* [Semantic Kernel: A popular library by Microsoft to integrate LLMs with plugins](https://learn.microsoft.com/en-us/semantic-kernel/concepts/vector-store-connectors/out-of-the-box-connectors/redis-connector?pivots=programming-language-csharp)
132+
* [LiteLLM integration](https://docs.litellm.ai/docs/caching/all_caches#initialize-cache---in-memory-redis-s3-bucket-redis-semantic-disk-cache-qdrant-semantic)
116133

117134
## Benchmarks
118135
See how we stack up against the competition.

0 commit comments

Comments
 (0)