You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: content/develop/ai/index.md
+20-3Lines changed: 20 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -53,6 +53,7 @@ Vector search retrieves results based on the similarity of high-dimensional nume
53
53
*[Implementing hybrid search with Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/02_hybrid_search.ipynb)
54
54
*[Vector search with Redis Python client](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/00_redispy.ipynb)
55
55
*[Vector search with Redis Vector Library](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/01_redisvl.ipynb)
56
+
*[Shows how to convert a float 32 index to float16 or integer data types](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/03_dtype_support.ipynb)
56
57
57
58
#### RAG
58
59
Retrieval Augmented Generation (aka RAG) is a technique to enhance the ability of an LLM to respond to user queries. The retrieval part of RAG is supported by a vector database, which can return semantically relevant results to a user’s query, serving as contextual information to augment the generative capabilities of an LLM.
@@ -65,12 +66,14 @@ Retrieval Augmented Generation (aka RAG) is a technique to enhance the ability o
65
66
*[Vector search with Azure](https://techcommunity.microsoft.com/blog/azuredevcommunityblog/vector-similarity-search-with-azure-cache-for-redis-enterprise/3822059)
66
67
*[RAG with Spring AI](https://redis.io/blog/building-a-rag-application-with-redis-and-spring-ai/)
67
68
*[RAG with Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main)
68
-
*[Notebook for additional tips and techniques to improve RAG quality](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)
69
+
*[Notebook for additional tips and techniques to improve RAG quality](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)
70
+
*[Implement a simple RBAC policy with vector search using Redis](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/07_user_role_based_rag.ipynb)
69
71
70
72
#### Agents
71
73
AI agents can act autonomously to plan and execute tasks for the user.
72
74
*[Notebook to get started with LangGraph and agents](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb)
73
75
*[Build a collaborative movie recommendation system using Redis for data storage, CrewAI for agent-based task execution, and LangGraph for workflow management.](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/01_crewai_langgraph_redis.ipynb)
LLMs are stateless. To maintain context within a conversation chat sessions must be stored and resent to the LLM. Redis manages the storage and retrieval of chat sessions to maintain context and conversational relevance.
@@ -81,14 +84,24 @@ LLMs are stateless. To maintain context within a conversation chat sessions must
81
84
An estimated 31% of LLM queries are potentially redundant. Redis enables semantic caching to help cut down on LLM costs quickly.
82
85
*[Build a semantic cache using the Doc2Cache framework and Llama3.1](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/doc2cache_llama3_1.ipynb)
83
86
*[Build a semantic cache with Redis and Google Gemini](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/semantic_caching_gemini.ipynb)
87
+
*[Optimize semantic cache threshold with RedisVL](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/02_semantic_cache_optimization.ipynb)
88
+
89
+
#### Semantic routing
90
+
Routing is a simple and effective way of preventing misuses with your AI application or for creating branching logic between data sources etc.
91
+
*[Simple examples of how to build an allow/block list router in addition to a multi-topic router](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-router/00_semantic_routing.ipynb)
92
+
*[Use RouterThresholdOptimizer from redisvl to setup best router config](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-router/01_routing_optimization.ipynb)
84
93
85
94
#### Computer vision
86
95
Build a facial recognition system using the Facenet embedding model and RedisVL.
*[Intro content filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/00_content_filtering.ipynb)
91
-
*[Intro collaborative filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb)
100
+
*[Intro collaborative filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb)
101
+
*[Intro deep learning two tower example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/02_two_towers.ipynb)
102
+
103
+
#### Feature store
104
+
*[Credit scoring system using Feast with Redis as the online store](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/feature-store/00_feast_credit_score.ipynb)
92
105
93
106
## Tutorials
94
107
Need a deeper-dive through different use cases and topics?
@@ -97,10 +110,12 @@ Need a deeper-dive through different use cases and topics?
97
110
*[Agentic RAG](https://github.com/redis-developer/agentic-rag) - A tutorial focused on agentic RAG with LlamaIndex and Amazon Bedrock
98
111
*[RAG on Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main) - A RAG tutorial featuring Redis with Vertex AI
99
112
*[RAG workbench](https://github.com/redis-developer/redis-rag-workbench) - A development playground for exploring RAG techniques with Redis
113
+
*[ArXiv Chat](https://github.com/redis-developer/ArxivChatGuru) - Streamlit demo of RAG over ArXiv documents with Redis & OpenAI
100
114
101
-
#### Recommendation system
115
+
#### Recommendations and search
102
116
*[Recommendation systems w/ NVIDIA Merlin & Redis](https://github.com/redis-developer/redis-nvidia-recsys) - Three examples, each escalating in complexity, showcasing the process of building a realtime recsys with NVIDIA and Redis
103
117
*[Redis product search](https://github.com/redis-developer/redis-product-search) - Build a real-time product search engine using features like full-text search, vector similarity, and real-time data updates
118
+
*[ArXiv Search](https://github.com/redis-developer/redis-arxiv-search) - Full stack implementation of Redis with React FE
104
119
105
120
## Ecosystem integrations
106
121
@@ -113,6 +128,8 @@ Need a deeper-dive through different use cases and topics?
113
128
*[Deploy GenAI apps faster with Redis and NVIDIA NIM](https://redis.io/blog/use-redis-with-nvidia-nim-to-deploy-genai-apps-faster/)
114
129
*[Building LLM Applications with Kernel Memory and Redis](https://redis.io/blog/building-llm-applications-with-kernel-memory-and-redis/)
115
130
*[DocArray integration of Redis as a vector database by Jina AI](https://docs.docarray.org/user_guide/storing/index_redis/)
131
+
*[Semantic Kernel: A popular library by Microsoft to integrate LLMs with plugins](https://learn.microsoft.com/en-us/semantic-kernel/concepts/vector-store-connectors/out-of-the-box-connectors/redis-connector?pivots=programming-language-csharp)
0 commit comments