You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -30,10 +30,7 @@ This page organized into a few sections depending on what you’re trying to do:
30
30
31
31
## How to's
32
32
33
-
1.[**Create a vector index**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#create-a-vector-index" >}}): Redis maintains a secondary index over your data with a defined schema (including vector fields and metadata). Redis supports [`FLAT`]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#flat-index" >}}) and [`HNSW`]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#hnsw-index" >}}) vector index types.
34
-
1.[**Store and update vectors**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#store-and-update-vectors" >}}): Redis stores vectors and metadata in hashes or JSON objects.
35
-
1.[**Search with vectors**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#search-with-vectors" >}}): Redis supports several advanced querying strategies with vector fields including k-nearest neighbor ([KNN]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#knn-vector-search" >}})), [vector range queries]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#vector-range-queries" >}}), and [metadata filters]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#filters" >}}).
36
-
1.[**Configure vector queries at runtime**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#runtime-query-parameters" >}}). Select the best filter mode to optimize query execution.
33
+
[**Create a vector index**]({{< relref "/develop/ai/vector-fields/" >}}): Redis maintains a secondary index over your data with a defined schema (including vector fields and metadata). Redis supports `FLAT` and `HNSW` vector index types. Redis stores vectors and metadata in hashes or JSON objects. Redis supports several advanced querying strategies with vector fields including k-nearest neighbor KNN, vector range queries, and metadata filters.
37
34
38
35
#### Learn how to index and query vector embeddings
@@ -52,43 +49,9 @@ Learn to perform vector search and use gateways and semantic caching in your AI/
52
49
53
50
## Quickstarts
54
51
55
-
Quickstarts or recipes are useful when you are trying to build specific functionality. For example, you might want to do RAG with LangChain or set up LLM memory for you AI agent. Get started with the following Redis Python notebooks.
52
+
Get started with the following Redis Python notebook.
56
53
57
-
*[The place to start if you are brand new to Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/redis-intro/00_redis_intro.ipynb)
58
-
59
-
#### Hybrid and vector search
60
-
Vector search retrieves results based on the similarity of high-dimensional numerical embeddings, while hybrid search combines this with traditional keyword or metadata-based filtering for more comprehensive results.
61
-
*[Implementing hybrid search with Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/02_hybrid_search.ipynb)
62
-
*[Vector search with Redis Python client](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/00_redispy.ipynb)
63
-
*[Vector search with Redis Vector Library](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/01_redisvl.ipynb)
64
-
65
-
#### RAG
66
-
Retrieval Augmented Generation (aka RAG) is a technique to enhance the ability of an LLM to respond to user queries. The retrieval part of RAG is supported by a vector database, which can return semantically relevant results to a user’s query, serving as contextual information to augment the generative capabilities of an LLM.
67
-
*[RAG from scratch with the Redis Vector Library](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/01_redisvl.ipynb)
68
-
*[RAG using Redis and LangChain](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/02_langchain.ipynb)
69
-
*[RAG using Redis and LlamaIndex](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/03_llamaindex.ipynb)
70
-
*[Advanced RAG with redisvl](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)
71
-
*[RAG using Redis and Nvidia](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb)
72
-
*[Utilize RAGAS framework to evaluate RAG performance](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/06_ragas_evaluation.ipynb)
73
-
*[Vector search with Azure](https://techcommunity.microsoft.com/blog/azuredevcommunityblog/vector-similarity-search-with-azure-cache-for-redis-enterprise/3822059)
74
-
*[RAG with Spring AI](https://redis.io/blog/building-a-rag-application-with-redis-and-spring-ai/)
75
-
*[RAG with Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main)
76
-
*[Notebook for additional tips and techniques to improve RAG quality](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)
77
-
78
-
#### Agents
79
-
AI agents can act autonomously to plan and execute tasks for the user.
80
-
*[Notebook to get started with LangGraph and agents](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb)
81
-
*[Build a collaborative movie recommendation system using Redis for data storage, CrewAI for agent-based task execution, and LangGraph for workflow management.](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/01_crewai_langgraph_redis.ipynb)
82
-
83
-
#### LLM memory
84
-
LLMs are stateless. To maintain context within a conversation chat sessions must be stored and resent to the LLM. Redis manages the storage and retrieval of chat sessions to maintain context and conversational relevance.
85
-
*[LLM session manager with semantic similarity](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/llm-session-manager/00_llm_session_manager.ipynb)
86
-
*[Handle multiple simultaneous chats with one instance](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/llm-session-manager/01_multiple_sessions.ipynb)
87
-
88
-
#### Semantic caching
89
-
An estimated 31% of LLM queries are potentially redundant. Redis enables semantic caching to help cut down on LLM costs quickly.
90
-
*[Build a semantic cache using the Doc2Cache framework and Llama3.1](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/doc2cache_llama3_1.ipynb)
91
-
*[Build a semantic cache with Redis and Google Gemini](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/semantic_caching_gemini.ipynb)
54
+
*[The place to start if you are brand new to Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/redis-intro/00_redis_intro.ipynb). See the [Redis AI notebooks collection]({{< relref "/develop/ai/notebooks-collection" >}}) for the complete list.
92
55
93
56
#### Computer vision
94
57
Build a facial recognition system using the Facenet embedding model and RedisVL.
@@ -105,8 +68,13 @@ Need a deeper-dive through different use cases and topics?
105
68
*[Agentic RAG](https://github.com/redis-developer/agentic-rag) - A tutorial focused on agentic RAG with LlamaIndex and Amazon Bedrock
106
69
*[RAG on Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main) - A RAG tutorial featuring Redis with Vertex AI
107
70
*[RAG workbench](https://github.com/redis-developer/redis-rag-workbench) - A development playground for exploring RAG techniques with Redis
71
+
*[Vector search with Azure](https://techcommunity.microsoft.com/blog/azuredevcommunityblog/vector-similarity-search-with-azure-cache-for-redis-enterprise/3822059)
72
+
*[RAG with Spring AI](https://redis.io/blog/building-a-rag-application-with-redis-and-spring-ai/)
73
+
*[RAG with Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main)
108
74
109
75
#### Recommendation system
76
+
*[Intro content filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/00_content_filtering.ipynb)
77
+
*[Intro collaborative filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb)
110
78
*[Recommendation systems w/ NVIDIA Merlin & Redis](https://github.com/redis-developer/redis-nvidia-recsys) - Three examples, each escalating in complexity, showcasing the process of building a realtime recsys with NVIDIA and Redis
111
79
*[Redis product search](https://github.com/redis-developer/redis-product-search) - Build a real-time product search engine using features like full-text search, vector similarity, and real-time data updates
0 commit comments