From 18a084a44f90d44d406f578f071de74cbb7210a7 Mon Sep 17 00:00:00 2001
From: Aniruddha Dhar Chowdhury
<91791624+Aniruddha775@users.noreply.github.com>
Date: Wed, 22 Dec 2021 20:50:58 +0530
Subject: [PATCH] Add files via upload
---
README.md | 228 +++++++++++++++++++++++++++---------------------------
plot1.R | 25 ++++++
plot1.png | Bin 0 -> 3889 bytes
plot2.R | 25 ++++++
plot2.png | Bin 0 -> 4504 bytes
plot3.R | 29 +++++++
plot3.png | Bin 0 -> 3959 bytes
plot4.R | 33 ++++++++
plot4.png | Bin 0 -> 7134 bytes
9 files changed, 226 insertions(+), 114 deletions(-)
create mode 100644 plot1.R
create mode 100644 plot1.png
create mode 100644 plot2.R
create mode 100644 plot2.png
create mode 100644 plot3.R
create mode 100644 plot3.png
create mode 100644 plot4.R
create mode 100644 plot4.png
diff --git a/README.md b/README.md
index d4c0d752a9e..f3e94b7e035 100644
--- a/README.md
+++ b/README.md
@@ -1,114 +1,114 @@
-## Introduction
-
-This assignment uses data from
-the UC Irvine Machine
-Learning Repository, a popular repository for machine learning
-datasets. In particular, we will be using the "Individual household
-electric power consumption Data Set" which I have made available on
-the course web site:
-
-
-* Dataset: Electric power consumption [20Mb]
-
-* Description: Measurements of electric power consumption in
-one household with a one-minute sampling rate over a period of almost
-4 years. Different electrical quantities and some sub-metering values
-are available.
-
-
-The following descriptions of the 9 variables in the dataset are taken
-from
-the UCI
-web site:
-
-
-- Date: Date in format dd/mm/yyyy
-- Time: time in format hh:mm:ss
-- Global_active_power: household global minute-averaged active power (in kilowatt)
-- Global_reactive_power: household global minute-averaged reactive power (in kilowatt)
-- Voltage: minute-averaged voltage (in volt)
-- Global_intensity: household global minute-averaged current intensity (in ampere)
-- Sub_metering_1: energy sub-metering No. 1 (in watt-hour of active energy). It corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot plates are not electric but gas powered).
-- Sub_metering_2: energy sub-metering No. 2 (in watt-hour of active energy). It corresponds to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator and a light.
-- Sub_metering_3: energy sub-metering No. 3 (in watt-hour of active energy). It corresponds to an electric water-heater and an air-conditioner.
-
-
-## Loading the data
-
-
-
-
-
-When loading the dataset into R, please consider the following:
-
-* The dataset has 2,075,259 rows and 9 columns. First
-calculate a rough estimate of how much memory the dataset will require
-in memory before reading into R. Make sure your computer has enough
-memory (most modern computers should be fine).
-
-* We will only be using data from the dates 2007-02-01 and
-2007-02-02. One alternative is to read the data from just those dates
-rather than reading in the entire dataset and subsetting to those
-dates.
-
-* You may find it useful to convert the Date and Time variables to
-Date/Time classes in R using the `strptime()` and `as.Date()`
-functions.
-
-* Note that in this dataset missing values are coded as `?`.
-
-
-## Making Plots
-
-Our overall goal here is simply to examine how household energy usage
-varies over a 2-day period in February, 2007. Your task is to
-reconstruct the following plots below, all of which were constructed
-using the base plotting system.
-
-First you will need to fork and clone the following GitHub repository:
-[https://github.com/rdpeng/ExData_Plotting1](https://github.com/rdpeng/ExData_Plotting1)
-
-
-For each plot you should
-
-* Construct the plot and save it to a PNG file with a width of 480
-pixels and a height of 480 pixels.
-
-* Name each of the plot files as `plot1.png`, `plot2.png`, etc.
-
-* Create a separate R code file (`plot1.R`, `plot2.R`, etc.) that
-constructs the corresponding plot, i.e. code in `plot1.R` constructs
-the `plot1.png` plot. Your code file **should include code for reading
-the data** so that the plot can be fully reproduced. You should also
-include the code that creates the PNG file.
-
-* Add the PNG file and R code file to your git repository
-
-When you are finished with the assignment, push your git repository to
-GitHub so that the GitHub version of your repository is up to
-date. There should be four PNG files and four R code files.
-
-
-The four plots that you will need to construct are shown below.
-
-
-### Plot 1
-
-
-
-
-
-### Plot 2
-
-
-
-
-### Plot 3
-
-
-
-
-### Plot 4
-
-
-
+## Introduction
+
+This assignment uses data from
+the UC Irvine Machine
+Learning Repository, a popular repository for machine learning
+datasets. In particular, we will be using the "Individual household
+electric power consumption Data Set" which I have made available on
+the course web site:
+
+
+* Dataset: Electric power consumption [20Mb]
+
+* Description: Measurements of electric power consumption in
+one household with a one-minute sampling rate over a period of almost
+4 years. Different electrical quantities and some sub-metering values
+are available.
+
+
+The following descriptions of the 9 variables in the dataset are taken
+from
+the UCI
+web site:
+
+
+- Date: Date in format dd/mm/yyyy
+- Time: time in format hh:mm:ss
+- Global_active_power: household global minute-averaged active power (in kilowatt)
+- Global_reactive_power: household global minute-averaged reactive power (in kilowatt)
+- Voltage: minute-averaged voltage (in volt)
+- Global_intensity: household global minute-averaged current intensity (in ampere)
+- Sub_metering_1: energy sub-metering No. 1 (in watt-hour of active energy). It corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot plates are not electric but gas powered).
+- Sub_metering_2: energy sub-metering No. 2 (in watt-hour of active energy). It corresponds to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator and a light.
+- Sub_metering_3: energy sub-metering No. 3 (in watt-hour of active energy). It corresponds to an electric water-heater and an air-conditioner.
+
+
+## Loading the data
+
+
+
+
+
+When loading the dataset into R, please consider the following:
+
+* The dataset has 2,075,259 rows and 9 columns. First
+calculate a rough estimate of how much memory the dataset will require
+in memory before reading into R. Make sure your computer has enough
+memory (most modern computers should be fine).
+
+* We will only be using data from the dates 2007-02-01 and
+2007-02-02. One alternative is to read the data from just those dates
+rather than reading in the entire dataset and subsetting to those
+dates.
+
+* You may find it useful to convert the Date and Time variables to
+Date/Time classes in R using the `strptime()` and `as.Date()`
+functions.
+
+* Note that in this dataset missing values are coded as `?`.
+
+
+## Making Plots
+
+Our overall goal here is simply to examine how household energy usage
+varies over a 2-day period in February, 2007. Your task is to
+reconstruct the following plots below, all of which were constructed
+using the base plotting system.
+
+First you will need to fork and clone the following GitHub repository:
+[https://github.com/rdpeng/ExData_Plotting1](https://github.com/rdpeng/ExData_Plotting1)
+
+
+For each plot you should
+
+* Construct the plot and save it to a PNG file with a width of 480
+pixels and a height of 480 pixels.
+
+* Name each of the plot files as `plot1.png`, `plot2.png`, etc.
+
+* Create a separate R code file (`plot1.R`, `plot2.R`, etc.) that
+constructs the corresponding plot, i.e. code in `plot1.R` constructs
+the `plot1.png` plot. Your code file **should include code for reading
+the data** so that the plot can be fully reproduced. You should also
+include the code that creates the PNG file.
+
+* Add the PNG file and R code file to your git repository
+
+When you are finished with the assignment, push your git repository to
+GitHub so that the GitHub version of your repository is up to
+date. There should be four PNG files and four R code files.
+
+
+The four plots that you will need to construct are shown below.
+
+
+### Plot 1
+
+
+
+
+
+### Plot 2
+
+
+
+
+### Plot 3
+
+
+
+
+### Plot 4
+
+
+
diff --git a/plot1.R b/plot1.R
new file mode 100644
index 00000000000..d7a0c108772
--- /dev/null
+++ b/plot1.R
@@ -0,0 +1,25 @@
+temp <- tempfile()
+download.file("https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip",temp)
+power <- read.table(unz(temp,"household_power_consumption.txt"),
+ sep=";",
+ header = T,
+ na="?",
+ colClasses = c("character",
+ 'character',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric'))
+
+unlink(temp)
+power <- power[which(power$Date == '2/2/2007' | power$Date=='1/2/2007'),]
+
+power$POSIX <-as.POSIXlt.character(paste(power$Date,power$Time),format = "%d/%m/%Y %H:%M:%S")
+
+#plot.1
+png(filename="plot1.png",width=480, height=480)
+hist(power$Global_active_power, col = 'red', main = 'Global Active Power', xlab = 'Global Active Power (kilowatts)')
+dev.off()
diff --git a/plot1.png b/plot1.png
new file mode 100644
index 0000000000000000000000000000000000000000..db485ff39050671edece1cdfb0f5b7b39278f29d
GIT binary patch
literal 3889
zcmbVP2UJs88jczubVP*_5JaSxFbW8viXemzqSDKNK}skJh!hzfZ80lEfplnZsGug9iZ*qh(nOag2$!;dVqFTj;7EP21CJM7#Io#LqQe~!(d<-66AvF
zC>UnXje;y5g~6aOkR_q;coZJ8AZEWCgvRXQAdBCFKo=g5!ILl$fCLpb9tFei_s3&k
z_~V5&H(k!OR+*CUQZ~e>l@jW?MHeU*#U4YJSA+%ORuYlTH$F
zT%uQ)kct5C`h1->LWGMt^Zz?p%B+ENvnQjTjRcLFE~?%tZct*+E|#IP%}
zIj-K_t0k{#yJWlFmAV{8%N-O6B8}We@}-Yj!nv;EwhTU)u3xTGOh@K`woDp^sPJ`L
zyX8xFKhN%fHY>nCc9MhIV2Tbs+8Smt8`34tu;x6kUeEXm=+Npr!5;MeKt8>RiT1g{
zyBdQY+8F;wde`m>PUX?<9Zc-bu7mxL3AMnm&yjfMLJs3da*1-t!y2ZD_Uh=AW1T%a
zSZ}Oc@h8JMpwJ@6GqdBBEE4YLY&I{1u$J{AU=-akYXrVyo*cDzx87N}WYj(bf2t_I
z-fcay%Dde&wq(gs+b(l8zScSocR^mcX7U1IEKg&8GQ{xF5>pBFcFfo7iifII+S^M8
z*x}UFVc;rB!9Z@X`d)*g4_bVM4#w|pyeU3CB4V^XrKDP#OxujA|2g%Ql7c2Vjpm2L
zDlX?|%og2~FNr8958vD>-nd*><&eR>s}Z-=EM+OHT|+iA9ev9oesjvN-4Y$@!kl-`
z&)lu5Y91&WpHMkGuJcPyrED|%spZk^szpx~L!zkt`i3Flp`82(YaD(nm_5YlCFe
zT=XpZSmAx%o(2-v^G%=Yf|+`wil&%@(GHdjCcC{Q*x40;r#BHuPh~t`}NRH}r^V
zL7Iyl08QutaIRMB)-K>_2fVHfP8>K+RRU==q19MB?ToD#QeXWH5ziD5A{7*GVSo!A
zQ>X$L%-l*rBP35}d4;)1$Vo^2trsVb&^>dsU=rFG1dPnzt&Ey93
zAI+;PN=T2`(gg^m$l${(G7%~0V6Bgf%rIdM6igRy@9z1>jJtCDi?Z%
zVsuO`s^p`jKw%<8QoS>^!|Pw^_~pL3prZ!}tL)8V(R5GP0{96R4_|Jqb-Y!-CJJ8n
z)oUvzyq9T8LH8wj5@M5uRcvasqKw5?RDWHD-|HXxMH?}_XHv`4cwMODMH>%Lb?9wz
z^|+QhR98$k{DF(Q(uHkCNGdq9hJ9RtPhaJne86yS>V?yRiH2>M`ZdyLVIUPjxgOTP
zUTd{1UO4s!B23xk#+bX?U$(MDzM*>HlMJ84dB5%E)g*Q22Q>hke^)IARXgKr8(%G_`S-Rl7B|`F4C5>QXzZRU2gcw>jEhxVblCKKA
z`d-$+)+zitFMrnT?NH{d@|~bw8C_9*=QgJsYA*QLTwiz*$_a`m%QDo2d+6cy#6;S=
zH<1uwn%34CzNZ>#LJP6{+9sP4C)};CnWr(5JI^{7>NgyqQtSl$8W~9%vLhj#)8mF#
z^nf!C@K44%1yvsLK}Mm-l}4)kE}BA@on
z#oLy^x2->y>ZYK9xi&ehU>2)$>
zm{_w=q@zc;U$jT$mH0c>AF}AUHLDGGqS^?ZDI!Ldw3{s@_wp0AK0b%$kwab-pi)Ag
z;MRo3d2`4S98ly2mv2w*?~3^t=Ts4DAn0f8vm~0d!|lu0-v7E=`xI_ZVYaG?0F;wQ
zS{Is=T)^yXXm9qVDhv?xyyW}@>%X@<`waY3U(J(F1@zD}$18^&QwWuOJLP8zpzI0R
z=QN?i{P&zbEB;@cPPrLJ_KW0##~4K*zpTS05nJD*3RNCv3$G|gym&&Kj5VpNc*naC
z-5Qc23y*<8-200P%V)PPEf(9)_Tf~>&76??eRk|8YXvHZVter}O{sTOOc
zmqYBc;zHwckjy-OIkfFth6p|q-8X|k%=0ApAovIhAKHZ$eWh97EbtLfcQA(lFiBV?
z{W(OHcDqGW85RQ4;UV>g!<1+S@RyG{3cLmnF!v=CIssevDV5Aa
z9Msoe_UZ_=p>w!7qw}FZKXX3K#RK3ryHDxZ3At5=h;$?XwC~~?%mt3ZMVIqUZxo+w
zar)m~GYySTwnS5gXAZ~iLZdU%=(eLQBL9h6vvqqV!)wgrQ@S4UI#dtGi3dgHyJy9V
zkuJw#%ixJzj#B)oMWZlD^=i&TE`LPCMtRl?d76H4lU-5SweNM@<>J|GM(r`11_qPy
z3F)8caj~uJgC`h++pH)y2WqnF)5gXwZ+Pof#_a5l=wejuWPAHIQoWdB9P$TZU62hA
zDL-FvOKObV>vv+lO*Q!8iqa=qK%e(6m%mvZzl}zKY!xNQLzT2#6e(W(9T;!2e>$|3%ea@P4zoP7Va3a!GeJb+iDs%J6z
zrmiLFS$N!I=grUWTRWJJRkio;$!+Y+*vZ9w3MKN&XUq_2gPRY@M$H!M^zON($0x=+
z=~Y>)uh&1}WIp>cvL^qIqUfk1k`4X4iqBl&sTOXuco1)&4YyX+xdCT;Q{9H?YBykZ+px_^q}yi_>^bv!
z^9^ekv>*C@EsJKVF{(;6rN>r0k~v7Vb{aiXZ*kXYh%@6%L%Fr}!4sn|y)nCZ
z^%XV6#tlY|N*Ru~6n?fv?qO>InmGWG)g3AqS5
AIRF3v
literal 0
HcmV?d00001
diff --git a/plot2.R b/plot2.R
new file mode 100644
index 00000000000..6ff0efc94e6
--- /dev/null
+++ b/plot2.R
@@ -0,0 +1,25 @@
+temp <- tempfile()
+download.file("https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip",temp)
+power <- read.table(unz(temp,"household_power_consumption.txt"),
+ sep=";",
+ header = T,
+ na="?",
+ colClasses = c("character",
+ 'character',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric'))
+
+unlink(temp)
+power <- power[which(power$Date == '2/2/2007' | power$Date=='1/2/2007'),]
+
+power$POSIX <-as.POSIXlt.character(paste(power$Date,power$Time),format = "%d/%m/%Y %H:%M:%S")
+
+#plot2
+png(filename="plot2.png",width=480, height=480)
+plot(x=power$POSIX ,y=power$Global_active_power, type = 'l', xlab='',ylab = 'Global Active Power (kilowatts)')
+dev.off()
diff --git a/plot2.png b/plot2.png
new file mode 100644
index 0000000000000000000000000000000000000000..08381f8befbb94c17bb7ddca70fcfe798f947ec2
GIT binary patch
literal 4504
zcmd5gXH-*Jw^0)zH^QidpoT6;A_$@qk!}H`hN2W{K@dd{f(S%P&>H~}kyxn%4n;&D
zM9?G#5U-#NB09(*C6p*2Bca5hNYA@E>-~9eeczAw<6Cd7d(W#AF&V1wlXcf)Fqb%a}nwFisFh!ZboKf9f%r0;WL12|{pSfq==8a5xf)
zfN3Q7$reZ?uneYQ0JC9gwer9>1Y%>S&5?u0Xn7OAro|3%Hd)<#5^_2>I_6i--<)W?
zwolK?r3Q-T0C8abi%SUl%BWpv-X-6)_;O*|~m*FiwAA*EVyA81$WKoR6|L@Q%
z(j*NjbwKv2=81n3q~jWJ!4iELgnpw?30o9_^(p@mw8ew{Y{4P^{{Pu2h-xrbe)s-$
z{Nkrg+T{+A+7-aeTxDGJ>GMKYsz31VvJ<324j-M;>zvYkU|AN7RXjvhNbpP``&F2l
z(wg3!b)`yw!h2SA_8QIFL7p!v&-{ze4+P1b?T;8|&qkP_QdBp^Klg8s3cm)#SUwyMWy&ZB@DW<(VO#WQ#onTtz0v$30vAzS>j5cpx-k
zqUo`<6^&SL^_RN6%QNRsD)^}P{l3<^*HX|P6}7F5J4EzY(?S<_ec9QP9a6B)CA`^{
zy;e4aeSU0$2Dn}F*=IOj7}dgh{7>8G@IkZowe2q#yce`@&AeHqCx`w3tdctoe<_@iyI^Gc3#xzw6J^QCp_P6$?Gr7)vR@U
z(@bGOo2x@g8pA&5Py9C*fU9+026xj(J1KxY^o(xvGoJf-+dX@B@jYQ}d-3eWYL@#r
z0V7MF88Hj&vhC?99u>{U*~dEIP)lm2Dxt1^$88`wRpuk?<@|;pEv`o10irvxb$gz=
zsPbxS)V}^^3(PS>elTu
zjTCJl8cO%HBu}w2!Z-d?q`(mB8@W}iBC=UH?rN+3KJ&p(m?CXvo=cW2-TQLI9EH)A
zg2}{-lG$crTfGfdr$SM6zB>29ro6u<4*@tgSzm@+zt2(V<(ta^)aqIc(ZeI#tGxpl
z+lrCTo3V-c(c#H@t@vIY*i=e%ds#lo4pu%0%9)+J2PWOMQ)bAZ!rf(+7_KY`tMgE?
zF89t~!8KT&a{Lb3P;gC6qDv|mqhT+8(-Gtz=3OXMLi;c>7v^J~jZZKf((Klao^@s0
z_0yUQ^+exQ#tVl^upebias#{ak1wnma#t)NTELTGnR~=E8n`&>y<0p)d%o>bU(+%w1~%Q5Q_YDnsXaaKL%oV8H+2Np7vk$
z7>;gJC3IK9q-gTy`-#)oy6q5H(7$vB7`XXL^9b~Y*tz$bXc6PMRBR03KAyYB%(m~o
ziYeQQMAdelL*)w4_y{!v#(fHxkF7g)(4ZvNDx!b!LgU2gLdwXUv8}J7h_o{BtnKXe
z&-~eiWWoC1k)_WY3qVxVI;2*^Pb59tIGC_GZ&_CIm|~!J3Di<)@t1iwa!t0r`Id{A
zvcWOVGG!~^=5>tS|`EUp9ac)67xYrRkbHGpB4TcB&T7M#X`Bc3`nwIYj39
zq=wQhG-nJHg*$A|219&1u0!9DUcmG0I*H2bYr705w|M7KzFVQ1K7OmD9EKhU_IPJO
zE@FZ{Ds6{#TIEmxdUB65^#nxX3pX&H-z`-hdiS?Zo&JlTJytBBOo7urIH5%}JNa%KYC36jr_HZb6P}^{t;P!L@!hKU{A>cd6ooV%1xlW|%MwEHAZ-+>raCZB=@3Zm(
ztj_gPp;=`x&SC@9d3!QC(JEykGcg!+@C4;nW}V||m!pvQ+7wEE-A$Ahe@&m2T&Myv
z#m+{P77Vh}=#?LZSScd{&kpZEeOY6pkIeOg7@;}faj8#M)bEl&zE76ZYquH0?Wp(m
zT#Otc3#=->sLD&<-aP=28iOxC0q@3K*^aU5b=VUC-2-=h4Eyl*qQmXe`1Ur}56bI7hqQ_b{L|8@
zCbw*otEeE@8mz}%g=J@i+R
zU|VKx4f7sYUo)x7+j@ye(_VE%;Q`qeev0sm5-@NzL!-N|&dG)hDSyM(sng02D&H=8
zrTeNG+ZR5(emFye_iN;Ayx5Il0uNxHYZ>Y^w%Fe5h+4fp`{73mb_wNs#q8Sgcf*s~
z9xmf_q`(5gJVv9^%&u>(f3dNyLOmIt29ro2-|uY%JW=LUFUa`D#z{eHsKw03FvGWn
zuhG2$DJ7qkV7l3aG^N2?(qakOQrKOUd6hz8+XVpkT6gx=e$dCbLmp}@I+8&CYf;S&
zcG_G?7^#iUPX4<
zwGl93ANEgQJjc#Ja<{$)n*-j$`+%fw<$+U8OSvX5yJ$sTht|6(YtpOd{a_f^82x-j
z(Gnfj@Mp-yW^2uTsF=N+l`_MaF5Wlu);WIqdmIy2fHf4GKgb70mCszPnXSQEL?z?TQvej!hS
zR37HPBSW7`m`JkJx{USC)O=7&%9+T^&H(#&Sf`c<+bXbi`&3Z14mUQ(S%Wet(LHc;
zs9O+|bQL6en3M7;8S6Z;6)JILFued?G1O|3nw;3XCw-Bvhln0g9A;KO(k_7Lu|FA1
ziqJ>K84&(KS)u!<*k8bhC*0Jl7Coikbx
zH{69C&tl&vfTIfQQA=&|xMKJpWH(P(Qi~vThr`|A0y~RUgXq9NQeE1DV`~tVBsv9q
zC4j<`Q_g4-cHGF_ea@&o7X{~ARzUG%7*d->S*7xoOH_GX&>
zvE9afJI_?Rk6V;vC+xrfXP=|LfFZ9A4^6#r{}#Obz8-DPV1y{bO_?L2=-)B8FoDw$Zkvs?vriFRaF%CA9lKNE7<^o`RwR(&R(OJ*Z1f
z!_1tZtn!s$ep2GnrK8P%+JUE^yIcmt%^2^8!b+14?J#bNZvAa3%n_L@c-LEU=d01$
zz4I~C55D;w>;I%4Vr|Z+`#W`6ik}=@*%@MGUG}n@OcnG&>!Q7&w#824Z-h?WfDXOl
z%fF7SqYKKGw3=iKlm+zDZ+TgU6W*nNkZQ~=k1>UAMPHNVz;hi93(+Nwr}|cEJxloM
zxNvC2)?ohm6Del0x#C$JY2_RHMu17Hay)S-xRfYDhxyGU9PIl1n3Aa*yJw0@c(E}w
zS>?@~HqX86u@ExCxr@)3{IR*BWdK})xRUcbrAZT+r<_DzL{sqUhMpYbsMzO6@9eI;
zorwc-6nEV_bMSv2Q6X?pr99xFdBeq~Tk}89Pmcym$>w{5L1tG`%7J`Z>27<_!}A
zmirAbp5C2XmYrM*B0mMbCF^yTXJ`Swr9O<-;E1**J%z@quJm1iZ;1s|nj(7N)fg3^
z?W~ZXq;#Y3H}eB1fW;})OXHoL*3%;*1x5OaaXU{&$P;+IzdXMIWtJ?D4$6*>CU6RE
j2L8=q`#*3`@J_PE1DWEKO0PQeku@*wS*JJ2VN80Ce$Q|loFf5G0YTdLZEPg$;!;m;%FVkLw{qp@=G%OnIiB
z;nj6k6kd@~iz}_nOE`(c^{+^#P1C2O#-HEXr0G;Yttt?T$8Xv4;omfA{k&~48rA`X
z#VT!A0GeFOQHYH);2Y!-9e7sypAAMUhqx$gQA=s4Y%rqRdE%ww3eLcdk^hbv-kR^{
zKJ)3UWOR1q)ZCkQ@0#ih*av`le$de68$fFqay*2e@-PjrUY9MmzO`#jvdnwtQ_^-r?51lpWA=2(@*lP
zEaq7(^XaCW-GqwSDQN*$_j*V70+CDL2rd&s+AzdqLTsv;o?g#~ows#Rl3jMgk1{b{
z`_f0Gf(l;C5$%F}nM9xa%s5#KNojr?^V?qr+1}!}o_4qH^V5abF4}Mw9vyR+?5IL=
z_!_1XLsb4}K{ni?jw>IEk6kcJY*@4WV!D5Ryro^GR?AkFSauPo@oJ7pHLrx9USIa{
zHk%;~teW1%b?!Upq!NM)x8;pC#K?f_d11a_cWk+pm1(BnCWAYcPCp5Ld(`fPH8e+2
zTSOJc2?c>b&28FBLC%jdTR3-@ubZ+zvI%z;?qmm4tz*PK9_qI2$HS*TWZt~4lo~go
z2+BUY=e+uyR+I`a473?lU75)Wus}q+2_ka&$GhLOG}1NT?4s!kukMzUJc$Vc^Vg#K
zd8|Uoy;h^cduJjoJQ(cf*bN!mdee7B3&th$otG#+v{g-Yej3$RcJ9URUUWJ-_M~^6@x{(dr5#S$VHgb$-)z6%8ULw_
z#-$JjWk(SATbr00tZg_Ha7OB1{PJw&212twR}tH-fipsXu*SaREs4^_rOQi!BF#_gaoKU0(Bm2=R){k6(TSj>VwEC
z={iBJ!27`$;N$JpJVpdY&9bj56-wW123@s})sG2x!Py2v%WZM-crAdZB;M^g{1qE6
z@n(T*FLJ+wa$q(|IP$^IzdilZ)+0I!xs5aSl-ZLi&S;c8h!a|R>9D>$A!m>g8#`Y=
zou+*PK6+t#t9@2X%<+7_0ZK7NG1nU`lG%%BO}ns_@KnXYrIro4E01Y_fqxCHM7e6z
zRmkh
zkYB6{cto~9C1vDQUdw7EM1_$8o3j1ok50is948Qe?#6876O2ELZ_+CYud*$6$KTju`f@P5@P|-M_nf*A~O?<~{rG-ABdCuP%vm37fuf5u29q85=
zqt0F4mwmTA4aw2f1LoOf@$v4>cNev;ctk|%%Ie`_>q}A!m7aT;YlJU&Zv;*wQJeMm
zmxNmV+rgq95fY`XUyq6UHL8&lnFdE)g6Xb5VP?*gE)AYH3@VoCt&``%3
zv^IHHd}l|^46Y+ll4Jff150b{IpHU>>-hs}_38P(knW9_8I$JKHOZ8-oXj#ued_uF
zjc8)!DPkCqFEAddcVE7ItGRLzxp3mtPOyzRvh%X=)`Ed-Xj`UV?l~G`?2hqd0{Ft{
z<0XoIX@P!$&_4wa&KXhkn9OrDdJg&;4Y6NZcJu^3o6sKNWGwV26pbPJLI$}adeCOR846IHM0Bb01#E*}2AJ-9o!PtXd
z6U_WkDB$zhF+oxg(1WO3LE27-`}WHVTj+J!>0bahK~|{Y!eaWK*Xu|fRH2d_B3hHX
z*gm2S81{Pmp4H(G_FqEOU0)nzfd~&grNd@!tvY`^LSr-Jo!RY4q8_QY?UkZR{&)g{)!|n2!{O{O
z8KCqKJb1jQztP0Ad@bm20+i0aj6RWP*qat+st)=meP{ddSLI2U^1RG2Q^!imkr6kw
zS^_7&OcR`Y*q~ag6%!qNijXP;?`c->6HlRUX1qJ66rykM0B#2jM%JpOjMQyi_3gti
zMM9E4Zs+v2p9orIz5d&Jhy>_e5zShTzdt;KD9h2kDHO>hR8m-*pe^h#yPcmuaA_mN
z<))@{J_v&T1La?s+{^#h8}$E2<5QZqnd2KtNrLl`y*@93#mT=sb`1ub)9))@PIRZ_
zWLvb-wU2&($|u#?)J{@UL`fPeA#FNZ8VA^>W8g8rdgRk}sPfv>e5%75V>6^Ch;y|B
zv}Fu9Hd_I=4&_Pb>h8)w1kqWypDLU`Na=yw?n(=T8)||p#lgN=LPcZF@#xL#o&4ri
zmWX%f5sn+~%Q=-TA^}Efgxf1?NJnPpcxJKe=?@Wi>Y0A)3a>cpTfUcd+@N)|RO?DY
zI!2nd;Z)RO{L8Vs4+dpXUo)O^ist(trD^i34)Oz`=+NEl>CDS&yHH2$u-{n+JCn?LtC0DKs4S@`
zo|N?QPVyUvIZNc0q@JawF;TI8v)=vZU2eVIB**gu$wz>qz0m{fENHvg;LEL>LgQt2
z{87QOP1;T2XVpTJdv3E753$+M!3>c5qOd%prEB7rKf6sMg^d5vvi3Fq)yk1&^tHGBxC^9Ym?N+5oNSq1gk@X%&B3!Fi{}HG5ua-a_8XVl
zZWHbi^`BX>ac5@UP17Vg9?g{N&~eks691Ss_G?fD6Vl!xd7;gW^}|>Ir6u2
z^M;sAD)Tlw$Bs;A^sN&pMp6&%w1Cc`3HFE;z^n)cNS!koP5B+-E>V=hg2`Gnhx$YT
z-6A@IK|fr{LqD&zS>{@~fZd_-pVR^zQ-7K@AULl6&&$lj%kRUV)tO|0BNa<6(-w?a
j+vIk#?VnZTwMy1V?{`_az~e(@D-7o4j@eVTI}G?61|>@6
literal 0
HcmV?d00001
diff --git a/plot4.R b/plot4.R
new file mode 100644
index 00000000000..35dba57393f
--- /dev/null
+++ b/plot4.R
@@ -0,0 +1,33 @@
+temp <- tempfile()
+download.file("https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip",temp)
+power <- read.table(unz(temp,"household_power_consumption.txt"),
+ sep=";",
+ header = T,
+ na="?",
+ colClasses = c("character",
+ 'character',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric',
+ 'numeric'))
+
+unlink(temp)
+power <- power[which(power$Date == '2/2/2007' | power$Date=='1/2/2007'),]
+
+power$POSIX <-as.POSIXlt.character(paste(power$Date,power$Time),format = "%d/%m/%Y %H:%M:%S")
+
+
+#plot4
+png(filename="plot4.png",width=480, height=480)
+par(mfrow=c(2,2))
+plot(x=power$POSIX ,y=power$Global_active_power, type = 'l', xlab='',ylab = 'Global Active Power')
+plot(x=power$POSIX ,y=power$Voltage, type = 'l', xlab='datetime',ylab = 'Voltage')
+plot(x=power$POSIX,y=power$Sub_metering_1, type='l', col = 'black', ylab = 'Energy sub metering', xlab = '')
+lines(x=power$POSIX,y=power$Sub_metering_2, col='red')
+lines(x=power$POSIX,y=power$Sub_metering_3, col='blue')
+legend('topright', legend = c('Sub_metering_1',"Sub_metering_2","Sub_metering_3"), col = c('black','red','blue'), lty = 1, bty = "n")
+plot(x=power$POSIX ,y=power$Global_reactive_power, type = 'l', xlab='datetime',ylab = 'Global_reactive_power')
+dev.off()
diff --git a/plot4.png b/plot4.png
new file mode 100644
index 0000000000000000000000000000000000000000..8d42c225a451a1683ff883fcda45263f40c13d92
GIT binary patch
literal 7134
zcmd6MXH*nTyKVO*BqKSal2pe;*QpSLpMWD{ir0D#lX
z)bIiTfb_rb0VESKXR|71CK>0?*%~oZ0MG^iZvbEb+Nppyg_+R?w6y_m?Y|H6o2u>Y
ztJ6l(Qc`KOR2qZg4N$zbDNH{m
zL`$VGC=>>b!eG!+wP~r|OgoK1qcIo^X4@2RCdy#^H8KH(1zvLi5JQ?7p0N$hS;$QY
z8`F4T+?6p}*?C^PhMBL1D#<123$~uPx}dQ8|nj|Ih$*yv*|s-3l>;Uywy{Ja9gna@(Xng9mOaFFU3v(z_%@
zixkX$9VY;*J|Zy?GOM95JKsD~H}@x3)ntg9r4GxOv(rKH)x1Q4#k;Z_8OLRDXO%;c
zTFFXaqFF4Eoc|mGFO6?J(m``j_5)EsiB|P!(s*BfTL`1?>U=BY`zE!%m&r(h88S
zSi6jI)Ev5Q3J8ZSS@8V|KGloSexdNE+2@fXa+qc*L*K3u1(2dxO4nlG&26^Y)qZnk
zO+C;Z4&h+b)=pRRhqQ*zPfyYFoh9sO88{iZN9dn}Lz*v8Qcd>Z6n6=ngW}W_0ad5J
zhS1Qp*5OW47J5P;K8`=&s8HXR9w0@pKRo^IQ&DL`5vuW=6F~b8>f;>wutpUk%lE8g
zU@{v{>E`NrdN6v%N4
z;Tl{qJIX4rLN`s+yb>*OE0729S@edb@$PT~Hz)QykeQpn0?v;W;$7feC9nxg_DSKA
z!BM4g_@SR{o*^H_{sI!jFC7h_Sf1Z2i1V0a)@l)S^&%&=(j*S!s08XRdTw%mqI~lv
zg0Ynz58aQ^p}YHqVS@-^Z|Jh593%i@58w#6E^Xqpq=XzC5D^I9mL>GO!I=R+klA44
z=FBqaH^QlmfpJKZHe3~4Q}rB$l_g)F|JrO~VhHD=yM;NisbFXLwjv8`T)#PUkJHft
z&mKw~JmOdH4E8Q2+!xJ!xg>Xqo!V@|!iJRrNw1NFNRr9BDlOvf&y>=t*o0DD$dkj-
z3FsZ5-n6%ZuYvTJt8F4cx%P!GDiiR1AQz9{K$#K5I;w^!|Ea@5$qk!wa!xlRFG6gii(qH;(5Lkr!pku~0
ztyVA(R~@G{VvO=}>-gx3H}X=#?iZxv2w>fj^BI9b(A&>PeUK`-QkoQYG&(#F4h0l|N5S3p1*)Pn1?bOpOSA
z?atSqsv`8o**>JrfGRlVL6FBe=$e6iZxKXhi#qT?(eZsAxngCf9uk4^m_NTajUO8d
zDjcD!ZIs+mqqB?m%zOFuMg_B3mh5JmFjDp
zYY){926VY9Ik1MHYqzXrt$2{k+g~x5`N>Rv^1rg9T?hZH_fy{FzYw~G2_1Xktd1cm
z0iw6ql-d}4XzW|`d?!DOI=sUic7bIXOMZBCT@7Jx1CMvM_Y~dxjPVDkp9`AKqEc5<%`4IL~0*b?d)SeJ%{o@d-ZZ4d;N4}`9IEV{5Vj!v@2_^aT
zDHC^Dno&p$_7E6?V(AO;xWz(fQcL=c(?ug%gw2UVn2FPAqc|kJL{oySV8jo1S117n
zPtR4T80sE{v!oPpT}QrMRT<6g1K>r{Gthv=@i5p)D@4XVx_SHXcQX`~@~L&iB7P_R
z2?sF150Y1=>^+su#0n!I)8__u`T@pL+|-P-iu9?EN9A$qh(uE_SNOKdX=^wmur3E9
zsiEKJA#f6Rk6R0OxUT;yAB+`0#QQ5XAcYIht1h|0{{Sds#YHy*aFsRPTqvi`nj1Z*#peN;wev>+JHd*_^Yp9w(H0${1n)8(?k^Sh+M5RbrQe
z9DhK#mS^m8S?jP1Xy5gJP5)L{=bFjrs>^`q`p&{+4|q{eJJHM#G(HJmV{^O-O7qpD
z>Eq|b;b%q(rZRS>aI(xINF*7B9DqkXq;QcA1Q(bM>6ixkxSc?LJOuX-8?|15^E%J=
zO7wLWBJKYLH5+?A$;JHYy=w@UyGrLNZXl?+4;MgMM*%XA-3G*1j6LI)Rs~6#&6Vb4
zr-A9Skv;_r4~
z3meF(;(TJJAp3`n7?RzP4P)Uboy(j&kgysh{5_sqYn*oXHq*13MLfF`Lq3b_ka=)i
z5@L-<)fxO)(?W9C=WY=%Cu+S*LQ7l>
zIQI1feu4nnSk{9MI!AM@sY0f{ln#gS(f0PW_r`T9uN8rZ7k+{SZJ*7GEY;~%!i6@0
zcCo6O74=-zX-SOEZ3CT!J{jQLh?~PCqE7NV?8oJeCfqm!P)2gpDSZY{cdn{6^J8yD
z64F`eVIEiR?nZ%^;h%ph?UW(Ak#`802_=xG)q&6*krKmSL&6(8(HL=#)}Ei@4D2GML2HTXUu9?Vd*}(eNbso=7pF&8ra#UD&Jym&3iK0@d;st%+ji!tCUAOR47Qy6mc2=h>z}yHZZ#
z62dp+>h}N?wcZMsWg7L~MJvWcz~wji#?(F-+ecKrQ*z2?A`qC@(2#j>bfrxD+rRJZ
zkHdxf#=SQFg4x*3Yiom}w#s;eBP9hbrB#PY-Fj0J@5r1898C=I}Yh
zD`J!bdd!yTJ#il~iVb%@xU9^NsS_E=w|8nx1vVN3ql2p}M{-SpUAG3`kRsIOXD@w;
zg7G&-w0>%?nZIqSD9lJRL@U$w*y!usZ1k_f7I=GLsl!pU3K6Q=@%ga;+^Cw-K@fzD
zo|yi}z}^Ts)+2Q~GM;~TRp-h^GVB*LcfN+xNWW^Evo=4`nq$R6sV(T^_e)wC`JV?n
zi-VKW+LwfXI&5rnBKKA$#!lOn+{Q*;6DgB>GtKSKa1J-oXAH^|0a}k3hgt`w?f%Pe
zzq0A(MXxQl8l|Cap2Cl%!S&jwfAG1O#k+!aBOn5tw3eyxA;JI
zV3mZ&53~O`XaCz++W(&-Mwc$_jJMG`Ukx0zLxi4Z-TKzD6EYX`mR|zvm7nU<50tlz
zemdF;LLUxmoEN4yzF~A*5T~{U;09%4-Tn=!cY_VQa3eO|sti%C8>1feyZX>hKIewI
z|NHmDb^HjeqGMoF3yK&zpU7ND$F~jDWuY$)=hswP?IdQVHy=*Zi_%zeLBk)rSLGX9
z{onA-u2)?*tkjXv?#mwxfA&Vq3b?hl_q#+%?;|T!|6b@X;|Fg5#t~UzzIG0(YSYG^
z4QK7yT_S_|w~K4Xt!!38G@AkHB27Rh?`~1+mOKmD$f3{y%x5>-kKE^}=
z8aJPXypG4SZ$)-J2qg5RUp{{EUCFiQ-yAPqjj%m$0oO2Qy+aQnm6wjrH$7u|9|Bt*
z1rg0E71J&`kwkyCph6(A?{=)^kuy-VIo1e4{ds3R;dJQ>^;gcrEu4#hgQZGNc}T7G
zI=2LQ9K%i*u3VZwRd>hNJlaA?i(fuP>iIEH{MmGfoy+dj_)^vJO=8aWW=-2u#-7*B
z2YL6=^o9Y|TmL*8{j575E;Ba-mS>gEWiGu`3;P7##H`7~nCz&F@qOs$+
zRtD_h%X^NEItCW0u@OaPgClBlxCs`-gV$&Lx+-THcy{?txoDq?nPR1`yywwqd_CzH
zcpa8~t=Psgu-&yFr3hNf*NdUciBvzuok<@PmV?qq}at}_XOr+k$
zS264soN+jYeQaMm
z3KDv(`ebGG)uAsYKg2=ea!jlOF2JN%rA@W7z-8GJDzWASAp<8BG{L?7!esjX*=mvH
zZr9r<4|W!$LEX()u8AdLbhi%pHVPt=8`?dYgHVu*b}bfCVn!cof^OX5hj_Q2nyh`_
z3<7p}o0{U2H|eck9Rnxh5rn+$n#-LFkC3>iU|m7Cn+BFb7re0OAFVA36)9Z4sJhbf
zPip3C&wr{3CUvQ@!0U>MSMM8`UU)5>;1|^*3SXa~ba~2@4L3mfdjE8uy*_bMOxyzz
z`ki;xO@bLwNk}b!3c>WYT~F7?5hd8@gJf%51MlD^6-v6lHL=jM+HJTl@*#?sv
zR$T-kb{p1?@(&-m$wt}D4X+(rG`4z9mPWe^b)%P^D^lcA)xv0vj*o--3+GzoaD9=6
zh^EoG!rub?dfsj)(ZnAiy-+~t?ZG@uoT9}e9!p*Ym_VbWEgqeR)>kEAX}{rn8A#)9
zIVY*TX}L|#&^F$p1t5AVjf1+cJ$e7KSomqK-J7ZBF0s{(l-&q(aA=^*4ry)@{Tmr71Ca{}d#qR2h%h|tdw@)&Wv;?58d
zs}6E6CRi-5KTUQ$LJ%2W9(G@O5vF!?zNh=oj7g7SFk2Rb3*xTQ?s;LrfaT@sHKyn^AdVFVH}^BZ(^Bj-6As10-XEpN{U5hSIFFfBr5
z%7j=bj-4e9%)=Ukj
z*qr;hgyEuB|2VfG?1R9F;#R4O3xDV&fJHfb9T_VCzDd=!RSEkxeJKEO&O<}zSk9{f
z4lEC_`Rre4=m`9tlzc9q8WEYC~Yp2*Ni11jq%zt7LB&gZGA^NG=VPv%6PjZv95jH{_c^
zCXVNrl1Qv0G&F(@{eU1}((&BoTtE>>@%@k|f+~20t!_W5qCm+1*HbMT+T6vrD7m7!u${l~MAfF!v9vDjIW2*vGkvI_5Bb;^820v_t5
z+rX(p^rP8iFBG+Fs`NzrJa#-*T1k^@>I|u_jJT?=?)gxiW_#
zRSzISTcKuy^bf!$FU$(=7PF(tA4SNK4d;QfH7N2qaz0o2Cx*JZ^Ab(GJr9gwh5sA|
z?3Hk`zRMTk7A0{is1dJ9znYE8GJC^fA7NXwWGLs~r}Zl`QHmfka#hc6e>%e0WSnr*
z%S|W=#SsW+jX}kd83?Z3x4V-3&8Q{UtD|%Y3ntI`ewX@BzmAhmCeU$@qCzd_7a$6<
z)thJBNmlgg6u2QP7-QkfYgzCF}B$m?3H
z=pKs~xu&t|=RGg5z_;jk>FER()}Lrwut^_{+eKfUKf#Ruf;a5+8cLpKJ?97FR-}Fk
zX*PX4-RcQV=x1nJCvvowZA6@sx@hY(WPc)VmN&yJ!7WOy$Db(hhe!5Jx5Vwlv~T9`
zDz9aY8?rD7Q6{jzHK=%l)!{9NhhLYjVDV@BsJ}!>2#EL_V}7-arTL0{G+*wnD4zT3
zE7LwQ?T{D!-@3MucW6y6^Jv;zIQBV9F$P7vp?6M5rPD<dA35LaXFB@shw-
zCHHdsv+b4Wy^?YDN-bu=qJIE+J16a~*EALPmO*iONafe;Wm(9k4APWZjCmCNC5%2xms(Jq2)0r7r8J3^LMg1S=4E|>T
literal 0
HcmV?d00001