|
| 1 | +# flake8: noqa |
| 2 | +# isort: skip_file |
| 3 | + |
| 4 | +# __xgboost_start__ |
| 5 | +import pandas as pd |
| 6 | +import xgboost |
| 7 | + |
| 8 | +# 1. Load your data as an `xgboost.DMatrix`. |
| 9 | +train_df = pd.read_csv("s3://ray-example-data/iris/train/1.csv") |
| 10 | +eval_df = pd.read_csv("s3://ray-example-data/iris/val/1.csv") |
| 11 | + |
| 12 | +train_X = train_df.drop("target", axis=1) |
| 13 | +train_y = train_df["target"] |
| 14 | +eval_X = eval_df.drop("target", axis=1) |
| 15 | +eval_y = eval_df["target"] |
| 16 | + |
| 17 | +dtrain = xgboost.DMatrix(train_X, label=train_y) |
| 18 | +deval = xgboost.DMatrix(eval_X, label=eval_y) |
| 19 | + |
| 20 | +# 2. Define your xgboost model training parameters. |
| 21 | +params = { |
| 22 | + "tree_method": "approx", |
| 23 | + "objective": "reg:squarederror", |
| 24 | + "eta": 1e-4, |
| 25 | + "subsample": 0.5, |
| 26 | + "max_depth": 2, |
| 27 | +} |
| 28 | + |
| 29 | +# 3. Do non-distributed training. |
| 30 | +bst = xgboost.train( |
| 31 | + params, |
| 32 | + dtrain=dtrain, |
| 33 | + evals=[(deval, "validation")], |
| 34 | + num_boost_round=10, |
| 35 | +) |
| 36 | +# __xgboost_end__ |
| 37 | + |
| 38 | + |
| 39 | +# __xgboost_ray_start__ |
| 40 | +import xgboost |
| 41 | + |
| 42 | +import ray.train |
| 43 | +from ray.train.xgboost import XGBoostTrainer, RayTrainReportCallback |
| 44 | + |
| 45 | +# 1. Load your data as a Ray Data Dataset. |
| 46 | +train_dataset = ray.data.read_csv("s3://anonymous@ray-example-data/iris/train") |
| 47 | +eval_dataset = ray.data.read_csv("s3://anonymous@ray-example-data/iris/val") |
| 48 | + |
| 49 | + |
| 50 | +def train_func(): |
| 51 | + # 2. Load your data shard as an `xgboost.DMatrix`. |
| 52 | + |
| 53 | + # Get dataset shards for this worker |
| 54 | + train_shard = ray.train.get_dataset_shard("train") |
| 55 | + eval_shard = ray.train.get_dataset_shard("eval") |
| 56 | + |
| 57 | + # Convert shards to pandas DataFrames |
| 58 | + train_df = train_shard.materialize().to_pandas() |
| 59 | + eval_df = eval_shard.materialize().to_pandas() |
| 60 | + |
| 61 | + train_X = train_df.drop("target", axis=1) |
| 62 | + train_y = train_df["target"] |
| 63 | + eval_X = eval_df.drop("target", axis=1) |
| 64 | + eval_y = eval_df["target"] |
| 65 | + |
| 66 | + dtrain = xgboost.DMatrix(train_X, label=train_y) |
| 67 | + deval = xgboost.DMatrix(eval_X, label=eval_y) |
| 68 | + |
| 69 | + # 3. Define your xgboost model training parameters. |
| 70 | + params = { |
| 71 | + "tree_method": "approx", |
| 72 | + "objective": "reg:squarederror", |
| 73 | + "eta": 1e-4, |
| 74 | + "subsample": 0.5, |
| 75 | + "max_depth": 2, |
| 76 | + } |
| 77 | + |
| 78 | + # 4. Do distributed data-parallel training. |
| 79 | + # Ray Train sets up the necessary coordinator processes and |
| 80 | + # environment variables for your workers to communicate with each other. |
| 81 | + bst = xgboost.train( |
| 82 | + params, |
| 83 | + dtrain=dtrain, |
| 84 | + evals=[(deval, "validation")], |
| 85 | + num_boost_round=10, |
| 86 | + # Optional: Use the `RayTrainReportCallback` to save and report checkpoints. |
| 87 | + callbacks=[RayTrainReportCallback()], |
| 88 | + ) |
| 89 | + |
| 90 | + |
| 91 | +# 5. Configure scaling and resource requirements. |
| 92 | +scaling_config = ray.train.ScalingConfig(num_workers=2, resources_per_worker={"CPU": 2}) |
| 93 | + |
| 94 | +# 6. Launch distributed training job. |
| 95 | +trainer = XGBoostTrainer( |
| 96 | + train_func, |
| 97 | + scaling_config=scaling_config, |
| 98 | + datasets={"train": train_dataset, "eval": eval_dataset}, |
| 99 | + # If running in a multi-node cluster, this is where you |
| 100 | + # should configure the run's persistent storage that is accessible |
| 101 | + # across all worker nodes. |
| 102 | + # run_config=ray.train.RunConfig(storage_path="s3://..."), |
| 103 | +) |
| 104 | +result = trainer.fit() |
| 105 | + |
| 106 | +# 7. Load the trained model |
| 107 | +import os |
| 108 | + |
| 109 | +with result.checkpoint.as_directory() as checkpoint_dir: |
| 110 | + model_path = os.path.join(checkpoint_dir, RayTrainReportCallback.CHECKPOINT_NAME) |
| 111 | + model = xgboost.Booster() |
| 112 | + model.load_model(model_path) |
| 113 | +# __xgboost_ray_end__ |
0 commit comments