|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "\n", |
| 8 | + "# CrewAI with AgentNeo Integration\n", |
| 9 | + "This Jupyter notebook demonstrates the integration of AgentNeo, a powerful tracing and monitoring tool, with CrewAI, a framework for orchestrating role-playing AI agents. This integration allows for comprehensive analysis and debugging of AI-powered systems." |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "# Setup and Imports\n", |
| 17 | + "First, let's import the necessary libraries and set up our environment." |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "code", |
| 22 | + "execution_count": null, |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "from crewai import Agent, Task, Crew, Process\n", |
| 27 | + "from dotenv import load_dotenv\n", |
| 28 | + "\n", |
| 29 | + "from agentneo import AgentNeo, Tracer, Execution ,Evaluation, launch_dashboard\n", |
| 30 | + "\n", |
| 31 | + "# Load environment variables\n", |
| 32 | + "load_dotenv(\"enter your .env path\")" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "markdown", |
| 37 | + "metadata": {}, |
| 38 | + "source": [ |
| 39 | + "\n", |
| 40 | + "# Initialize AgentNeo Session and Tracer\n", |
| 41 | + "Now, let's set up our AgentNeo session and tracer." |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": null, |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [], |
| 49 | + "source": [ |
| 50 | + "# Initialize AgentNeo Session and Tracer\n", |
| 51 | + "neo_session = AgentNeo(session_name=\"digital_marketing_campaign\")\n", |
| 52 | + "\n", |
| 53 | + "# Connect to a Project\n", |
| 54 | + "neo_session.create_project(project_name=\"digital_marketing_project\")\n", |
| 55 | + "\n", |
| 56 | + "# Create tracer\n", |
| 57 | + "tracer = Tracer(session=neo_session)\n", |
| 58 | + "\n", |
| 59 | + "tracer.start()" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "markdown", |
| 64 | + "metadata": {}, |
| 65 | + "source": [ |
| 66 | + "\n", |
| 67 | + "# Define Helper Functions\n", |
| 68 | + "Let's define some helper functions for our AI tools, using AgentNeo's tracing capabilities." |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": 7, |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [], |
| 76 | + "source": [ |
| 77 | + "from langchain_community.tools import TavilySearchResults\n", |
| 78 | + "\n", |
| 79 | + "seo_tool = tracer.wrap_langchain_tool(TavilySearchResults())" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "markdown", |
| 84 | + "metadata": {}, |
| 85 | + "source": [ |
| 86 | + "# Define Agents\n", |
| 87 | + "Now, let's create our AI agents using CrewAI." |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [], |
| 95 | + "source": [ |
| 96 | + "# Define Agents\n", |
| 97 | + "@tracer.trace_agent(\"content_creator\")\n", |
| 98 | + "def create_content_creator():\n", |
| 99 | + " return Agent(\n", |
| 100 | + " role='Content Creator',\n", |
| 101 | + " goal='Produce engaging content for blogs and social media.',\n", |
| 102 | + " backstory=\"\"\"You are a skilled content creator specializing in crafting compelling narratives.\n", |
| 103 | + " Your content drives user engagement and brand awareness.\"\"\",\n", |
| 104 | + " verbose=True,\n", |
| 105 | + " allow_delegation=False,\n", |
| 106 | + " tools=[content_tool],\n", |
| 107 | + " )\n", |
| 108 | + "\n", |
| 109 | + "@tracer.trace_agent(\"social_media_manager\")\n", |
| 110 | + "def create_social_media_manager():\n", |
| 111 | + " return Agent(\n", |
| 112 | + " role='Social Media Manager',\n", |
| 113 | + " goal='Develop and execute a social media strategy to enhance brand presence.',\n", |
| 114 | + " backstory=\"\"\"As a social media manager, you excel at building brand communities and engaging audiences.\n", |
| 115 | + " You utilize analytics to inform your strategies.\"\"\",\n", |
| 116 | + " verbose=True,\n", |
| 117 | + " allow_delegation=True,\n", |
| 118 | + " tools=[social_media_tool],\n", |
| 119 | + " )\n", |
| 120 | + "\n", |
| 121 | + "@tracer.trace_agent(\"analytics_expert\")\n", |
| 122 | + "def create_analytics_expert():\n", |
| 123 | + " return Agent(\n", |
| 124 | + " role='Analytics Expert',\n", |
| 125 | + " goal='Analyze campaign performance and optimize strategies based on data.',\n", |
| 126 | + " backstory=\"\"\"You are an analytics expert with a knack for interpreting data.\n", |
| 127 | + " You provide actionable insights that drive marketing decisions.\"\"\",\n", |
| 128 | + " verbose=True,\n", |
| 129 | + " allow_delegation=True,\n", |
| 130 | + " tools=[analytics_tool],\n", |
| 131 | + " )\n", |
| 132 | + "\n", |
| 133 | + "content_creator = create_content_creator()\n", |
| 134 | + "social_media_manager = create_social_media_manager()\n", |
| 135 | + "analytics_expert = create_analytics_expert()\n", |
| 136 | + "\n" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "markdown", |
| 141 | + "metadata": {}, |
| 142 | + "source": [ |
| 143 | + "# Define Tasks\n", |
| 144 | + "Let's create tasks for our agents." |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": 18, |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [], |
| 152 | + "source": [ |
| 153 | + "# Define Tasks\n", |
| 154 | + "task1 = Task(\n", |
| 155 | + " description=\"\"\"Create a series of blog posts that highlight the features and benefits of the new product.\n", |
| 156 | + " Ensure SEO optimization for key search terms.\"\"\",\n", |
| 157 | + " expected_output=\"A set of blog posts in markdown format\",\n", |
| 158 | + " agent=content_creator\n", |
| 159 | + ")\n", |
| 160 | + "\n", |
| 161 | + "task2 = Task(\n", |
| 162 | + " description=\"\"\"Develop a comprehensive social media strategy for the product launch,\n", |
| 163 | + " including content calendar and engagement tactics.\"\"\",\n", |
| 164 | + " expected_output=\"Social media strategy document\",\n", |
| 165 | + " agent=social_media_manager\n", |
| 166 | + ")\n", |
| 167 | + "\n", |
| 168 | + "task3 = Task(\n", |
| 169 | + " description=\"\"\"Analyze the initial performance metrics of the marketing campaign,\n", |
| 170 | + " providing insights and recommendations for adjustments.\"\"\",\n", |
| 171 | + " expected_output=\"Analysis report with recommendations\",\n", |
| 172 | + " agent=analytics_expert\n", |
| 173 | + ")" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "markdown", |
| 178 | + "metadata": {}, |
| 179 | + "source": [ |
| 180 | + "\n", |
| 181 | + "# Create and Execute Crew\n", |
| 182 | + "Now, let's create our crew and execute the tasks." |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "code", |
| 187 | + "execution_count": null, |
| 188 | + "metadata": {}, |
| 189 | + "outputs": [], |
| 190 | + "source": [ |
| 191 | + "# Create and Execute Crew\n", |
| 192 | + "crew = Crew(\n", |
| 193 | + " agents=[content_creator, social_media_manager, analytics_expert],\n", |
| 194 | + " tasks=[task1, task2, task3],\n", |
| 195 | + " process=Process.sequential,\n", |
| 196 | + " verbose=True,\n", |
| 197 | + ")\n", |
| 198 | + "result = crew.kickoff()\n", |
| 199 | + "\n", |
| 200 | + "print(result)\n", |
| 201 | + "tracer.stop()" |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "cell_type": "markdown", |
| 206 | + "metadata": {}, |
| 207 | + "source": [ |
| 208 | + "# Metrics Evaluation\n", |
| 209 | + "Supported Metrics\n", |
| 210 | + "Goal Decomposition Efficiency (goal_decomposition_efficiency)\n", |
| 211 | + "Goal Fulfillment Rate (goal_fulfillment_rate)\n", |
| 212 | + "Tool Correctness Metric (tool_correctness_metric)\n", |
| 213 | + "Tool Call Success Rate Metric (tool_call_success_rate_metric)" |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "cell_type": "code", |
| 218 | + "execution_count": 15, |
| 219 | + "metadata": {}, |
| 220 | + "outputs": [], |
| 221 | + "source": [ |
| 222 | + "exe = Execution(session=neo_session, trace_id=1)\n", |
| 223 | + "\n", |
| 224 | + "# run a single metric\n", |
| 225 | + "exe.execute(metric_list=['tool_call_success_rate_metric'])" |
| 226 | + ] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "code", |
| 230 | + "execution_count": null, |
| 231 | + "metadata": {}, |
| 232 | + "outputs": [], |
| 233 | + "source": [ |
| 234 | + "#print metric result\n", |
| 235 | + "metric_results = exe.get_results()\n", |
| 236 | + "print(metric_results)" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "code", |
| 241 | + "execution_count": null, |
| 242 | + "metadata": {}, |
| 243 | + "outputs": [], |
| 244 | + "source": [ |
| 245 | + "neo_session.launch_dashboard(port=3000)" |
| 246 | + ] |
| 247 | + } |
| 248 | + ], |
| 249 | + "metadata": { |
| 250 | + "kernelspec": { |
| 251 | + "display_name": "Python 3", |
| 252 | + "language": "python", |
| 253 | + "name": "python3" |
| 254 | + }, |
| 255 | + "language_info": { |
| 256 | + "codemirror_mode": { |
| 257 | + "name": "ipython", |
| 258 | + "version": 3 |
| 259 | + }, |
| 260 | + "file_extension": ".py", |
| 261 | + "mimetype": "text/x-python", |
| 262 | + "name": "python", |
| 263 | + "nbconvert_exporter": "python", |
| 264 | + "pygments_lexer": "ipython3", |
| 265 | + "version": "3.11.10" |
| 266 | + } |
| 267 | + }, |
| 268 | + "nbformat": 4, |
| 269 | + "nbformat_minor": 2 |
| 270 | +} |
0 commit comments