You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Returns the two-times correlation function of three operators ``\hat{A}``, ``\hat{B}`` and ``\hat{C}``: ``\expval{\hat{A}(t) \hat{B}(t + \tau) \hat{C}(t)}``
26
+
Returns the two-times correlation function of three operators ``\hat{A}``, ``\hat{B}`` and ``\hat{C}``: ``\left\langle \hat{A}(t) \hat{B}(t + \tau) \hat{C}(t)\right\rangle``
27
27
28
28
for a given initial state ``\ket{\psi_0}``.
29
29
"""
@@ -69,9 +69,9 @@ end
69
69
kwargs...)
70
70
71
71
Returns the two-times correlation function of two operators ``\hat{A}`` and ``\hat{B}``
72
-
at different times: ``\expval{\hat{A}(t + \tau) \hat{B}(t)}``.
72
+
at different times: ``\left\langle \hat{A}(t + \tau) \hat{B}(t)\right\rangle``.
73
73
74
-
When `reverse=true`, the correlation function is calculated as ``\expval{\hat{A}(t) \hat{B}(t + \tau)}``.
74
+
When `reverse=true`, the correlation function is calculated as ``\left\langle \hat{A}(t) \hat{B}(t + \tau)\right\rangle``.
75
75
"""
76
76
functioncorrelation_2op_2t(
77
77
H::QuantumObject{<:AbstractArray{T1},HOpType},
@@ -111,9 +111,9 @@ end
111
111
reverse::Bool=false,
112
112
kwargs...)
113
113
114
-
Returns the one-time correlation function of two operators ``\hat{A}`` and ``\hat{B}`` at different times ``\expval{\hat{A}(\tau) \hat{B}(0)}``.
114
+
Returns the one-time correlation function of two operators ``\hat{A}`` and ``\hat{B}`` at different times ``\left\langle \hat{A}(\tau) \hat{B}(0)\right\rangle``.
115
115
116
-
When `reverse=true`, the correlation function is calculated as ``\expval{\hat{A}(0) \hat{B}(\tau)}``.
116
+
When `reverse=true`, the correlation function is calculated as ``\left\langle \hat{A}(0) \hat{B}(\tau)\right\rangle``.
117
117
"""
118
118
functioncorrelation_2op_1t(
119
119
H::QuantumObject{<:AbstractArray{T1},HOpType},
@@ -149,7 +149,7 @@ end
149
149
Returns the emission spectrum
150
150
151
151
```math
152
-
S(\omega) = \int_{-\infty}^\infty \expval{\hat{A}(\tau) \hat{B}(0)} e^{-i \omega \tau} d \tau
0 commit comments