Skip to content

Commit b263c97

Browse files
committed
Automated tutorials push
1 parent 334061a commit b263c97

File tree

204 files changed

+16844
-15982
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

204 files changed

+16844
-15982
lines changed

_downloads/0ccffddcfee1f815c02241b985844376/torch_compile_user_defined_triton_kernel_tutorial.py

Lines changed: 0 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -227,12 +227,6 @@ def sin_kernel(
227227
output = tl.sin(x)
228228
tl.store(out_ptr + offsets, output, mask=mask)
229229

230-
def sin_triton(x):
231-
out = torch.empty_like(x)
232-
n_elements = x.numel()
233-
sin_kernel[(n_elements,)](x, out, n_elements, BLOCK_SIZE=4)
234-
return out
235-
236230
######################################################################
237231
# You can invoke the ``triton_op`` in one of the following two ways.
238232

_downloads/3195443a0ced3cabc0ad643537bdb5cd/introyt1_tutorial.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434
{
3535
"cell_type": "code",
3636
"execution_count": null,
37-
"id": "fd93c4dd",
37+
"id": "08cb6c00",
3838
"metadata": {},
3939
"outputs": [],
4040
"source": [
@@ -50,7 +50,7 @@
5050
},
5151
{
5252
"cell_type": "markdown",
53-
"id": "13993efb",
53+
"id": "76b87d77",
5454
"metadata": {},
5555
"source": [
5656
"\n",

_downloads/4355e2cef7d17548f1e25f97a62828c4/template_tutorial.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@
3131
{
3232
"cell_type": "code",
3333
"execution_count": null,
34-
"id": "0b7bd3cd",
34+
"id": "c26dff5f",
3535
"metadata": {},
3636
"outputs": [],
3737
"source": [
@@ -47,7 +47,7 @@
4747
},
4848
{
4949
"cell_type": "markdown",
50-
"id": "4c9e9395",
50+
"id": "24e76ea7",
5151
"metadata": {},
5252
"source": [
5353
"\n",

_downloads/63a0f0fc7b3ffb15d3a5ac8db3d521ee/tensors_deeper_tutorial.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434
{
3535
"cell_type": "code",
3636
"execution_count": null,
37-
"id": "88e7740c",
37+
"id": "a44f97a5",
3838
"metadata": {},
3939
"outputs": [],
4040
"source": [
@@ -50,7 +50,7 @@
5050
},
5151
{
5252
"cell_type": "markdown",
53-
"id": "6aaaa644",
53+
"id": "a9601b89",
5454
"metadata": {},
5555
"source": [
5656
"\n",

_downloads/770632dd3941d2a51b831c52ded57aa2/trainingyt.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@
3535
{
3636
"cell_type": "code",
3737
"execution_count": null,
38-
"id": "c0f2ffb6",
38+
"id": "73319286",
3939
"metadata": {},
4040
"outputs": [],
4141
"source": [
@@ -51,7 +51,7 @@
5151
},
5252
{
5353
"cell_type": "markdown",
54-
"id": "58b8afc8",
54+
"id": "f4c949b1",
5555
"metadata": {},
5656
"source": [
5757
"\n",

_downloads/c28f42852d456daf9af72da6c6909556/captumyt.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@
3737
{
3838
"cell_type": "code",
3939
"execution_count": null,
40-
"id": "c49ae6d6",
40+
"id": "e14c1480",
4141
"metadata": {},
4242
"outputs": [],
4343
"source": [
@@ -53,7 +53,7 @@
5353
},
5454
{
5555
"cell_type": "markdown",
56-
"id": "0fec58ed",
56+
"id": "0c23d28f",
5757
"metadata": {},
5858
"source": [
5959
"\n",

_downloads/e2e556f6b4693c2cef716dd7f40caaf6/tensorboardyt_tutorial.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@
3535
{
3636
"cell_type": "code",
3737
"execution_count": null,
38-
"id": "e8788757",
38+
"id": "8c4b1dc8",
3939
"metadata": {},
4040
"outputs": [],
4141
"source": [
@@ -51,7 +51,7 @@
5151
},
5252
{
5353
"cell_type": "markdown",
54-
"id": "a71e84dd",
54+
"id": "de347df5",
5555
"metadata": {},
5656
"source": [
5757
"\n",

_downloads/ed9d4f94afb79f7dada6742a06c486a5/autogradyt_tutorial.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434
{
3535
"cell_type": "code",
3636
"execution_count": null,
37-
"id": "29285e10",
37+
"id": "71e2b25d",
3838
"metadata": {},
3939
"outputs": [],
4040
"source": [
@@ -50,7 +50,7 @@
5050
},
5151
{
5252
"cell_type": "markdown",
53-
"id": "125f6aa8",
53+
"id": "2b11e675",
5454
"metadata": {},
5555
"source": [
5656
"\n",

_downloads/f827f181506a79226f4ffbcf7c9a5a50/torch_compile_user_defined_triton_kernel_tutorial.ipynb

Lines changed: 1 addition & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -283,13 +283,7 @@
283283
" mask = offsets < n_elements\n",
284284
" x = tl.load(in_ptr0 + offsets, mask=mask)\n",
285285
" output = tl.sin(x)\n",
286-
" tl.store(out_ptr + offsets, output, mask=mask)\n",
287-
"\n",
288-
"def sin_triton(x):\n",
289-
" out = torch.empty_like(x)\n",
290-
" n_elements = x.numel()\n",
291-
" sin_kernel[(n_elements,)](x, out, n_elements, BLOCK_SIZE=4)\n",
292-
" return out"
286+
" tl.store(out_ptr + offsets, output, mask=mask)"
293287
]
294288
},
295289
{

_downloads/fe726e041160526cf828806536922cf6/modelsyt_tutorial.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434
{
3535
"cell_type": "code",
3636
"execution_count": null,
37-
"id": "6f1ec145",
37+
"id": "2ebda2a4",
3838
"metadata": {},
3939
"outputs": [],
4040
"source": [
@@ -50,7 +50,7 @@
5050
},
5151
{
5252
"cell_type": "markdown",
53-
"id": "d3b40f65",
53+
"id": "a3d22bbd",
5454
"metadata": {},
5555
"source": [
5656
"\n",
Loading
Loading

_images/sphx_glr_coding_ddpg_001.png

1.53 KB
Loading
4.77 KB
Loading
-3.52 KB
Loading
8 Bytes
Loading
268 Bytes
Loading
-516 Bytes
Loading
-8.24 KB
Loading
Loading
-4.01 KB
Loading

_sources/advanced/coding_ddpg.rst.txt

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -1634,26 +1634,26 @@ modules we need.
16341634
16351635
16361636
0%| | 0/10000 [00:00<?, ?it/s]
1637-
8%|8 | 800/10000 [00:00<00:06, 1410.71it/s]
1638-
16%|#6 | 1600/10000 [00:03<00:22, 378.10it/s]
1639-
24%|##4 | 2400/10000 [00:04<00:13, 545.68it/s]
1640-
32%|###2 | 3200/10000 [00:05<00:09, 722.60it/s]
1641-
40%|#### | 4000/10000 [00:05<00:06, 878.99it/s]
1642-
48%|####8 | 4800/10000 [00:06<00:05, 1015.48it/s]
1643-
56%|#####6 | 5600/10000 [00:06<00:04, 1098.42it/s]
1644-
reward: -2.34 (r0 = -2.37), reward eval: reward: -0.01, reward normalized=-2.61/6.06, grad norm= 57.52, loss_value= 275.17, loss_actor= 15.28, target value: -16.49: 56%|#####6 | 5600/10000 [00:07<00:04, 1098.42it/s]
1645-
reward: -2.34 (r0 = -2.37), reward eval: reward: -0.01, reward normalized=-2.61/6.06, grad norm= 57.52, loss_value= 275.17, loss_actor= 15.28, target value: -16.49: 64%|######4 | 6400/10000 [00:08<00:04, 794.01it/s]
1646-
reward: -0.13 (r0 = -2.37), reward eval: reward: -0.01, reward normalized=-1.97/5.52, grad norm= 41.54, loss_value= 239.26, loss_actor= 12.43, target value: -12.86: 64%|######4 | 6400/10000 [00:09<00:04, 794.01it/s]
1647-
reward: -0.13 (r0 = -2.37), reward eval: reward: -0.01, reward normalized=-1.97/5.52, grad norm= 41.54, loss_value= 239.26, loss_actor= 12.43, target value: -12.86: 72%|#######2 | 7200/10000 [00:09<00:04, 673.52it/s]
1648-
reward: -2.83 (r0 = -2.37), reward eval: reward: -0.01, reward normalized=-2.63/6.00, grad norm= 197.69, loss_value= 303.71, loss_actor= 14.14, target value: -17.00: 72%|#######2 | 7200/10000 [00:10<00:04, 673.52it/s]
1649-
reward: -2.83 (r0 = -2.37), reward eval: reward: -0.01, reward normalized=-2.63/6.00, grad norm= 197.69, loss_value= 303.71, loss_actor= 14.14, target value: -17.00: 80%|######## | 8000/10000 [00:11<00:03, 607.26it/s]
1650-
reward: -4.58 (r0 = -2.37), reward eval: reward: -0.01, reward normalized=-2.40/4.96, grad norm= 87.82, loss_value= 180.65, loss_actor= 17.24, target value: -15.56: 80%|######## | 8000/10000 [00:12<00:03, 607.26it/s]
1651-
reward: -4.58 (r0 = -2.37), reward eval: reward: -0.01, reward normalized=-2.40/4.96, grad norm= 87.82, loss_value= 180.65, loss_actor= 17.24, target value: -15.56: 88%|########8 | 8800/10000 [00:13<00:02, 572.64it/s]
1652-
reward: -4.56 (r0 = -2.37), reward eval: reward: -5.33, reward normalized=-2.60/4.73, grad norm= 134.09, loss_value= 156.18, loss_actor= 18.81, target value: -17.27: 88%|########8 | 8800/10000 [00:16<00:02, 572.64it/s]
1653-
reward: -4.56 (r0 = -2.37), reward eval: reward: -5.33, reward normalized=-2.60/4.73, grad norm= 134.09, loss_value= 156.18, loss_actor= 18.81, target value: -17.27: 96%|#########6| 9600/10000 [00:17<00:01, 364.19it/s]
1654-
reward: -4.35 (r0 = -2.37), reward eval: reward: -5.33, reward normalized=-2.95/5.17, grad norm= 188.52, loss_value= 288.01, loss_actor= 13.67, target value: -20.60: 96%|#########6| 9600/10000 [00:17<00:01, 364.19it/s]
1655-
reward: -4.35 (r0 = -2.37), reward eval: reward: -5.33, reward normalized=-2.95/5.17, grad norm= 188.52, loss_value= 288.01, loss_actor= 13.67, target value: -20.60: : 10400it [00:19, 340.11it/s]
1656-
reward: -4.58 (r0 = -2.37), reward eval: reward: -5.33, reward normalized=-3.41/4.08, grad norm= 113.89, loss_value= 176.51, loss_actor= 16.60, target value: -23.97: : 10400it [00:20, 340.11it/s]
1637+
8%|8 | 800/10000 [00:00<00:06, 1421.82it/s]
1638+
16%|#6 | 1600/10000 [00:03<00:21, 392.95it/s]
1639+
24%|##4 | 2400/10000 [00:04<00:13, 569.57it/s]
1640+
32%|###2 | 3200/10000 [00:04<00:09, 735.92it/s]
1641+
40%|#### | 4000/10000 [00:05<00:06, 873.28it/s]
1642+
48%|####8 | 4800/10000 [00:06<00:05, 988.60it/s]
1643+
56%|#####6 | 5600/10000 [00:06<00:04, 1075.15it/s]
1644+
reward: -2.13 (r0 = -2.83), reward eval: reward: 0.00, reward normalized=-2.20/6.15, grad norm= 88.70, loss_value= 325.66, loss_actor= 14.03, target value: -14.01: 56%|#####6 | 5600/10000 [00:07<00:04, 1075.15it/s]
1645+
reward: -2.13 (r0 = -2.83), reward eval: reward: 0.00, reward normalized=-2.20/6.15, grad norm= 88.70, loss_value= 325.66, loss_actor= 14.03, target value: -14.01: 64%|######4 | 6400/10000 [00:08<00:04, 776.79it/s]
1646+
reward: -0.12 (r0 = -2.83), reward eval: reward: 0.00, reward normalized=-1.99/5.54, grad norm= 76.65, loss_value= 190.16, loss_actor= 12.20, target value: -12.53: 64%|######4 | 6400/10000 [00:09<00:04, 776.79it/s]
1647+
reward: -0.12 (r0 = -2.83), reward eval: reward: 0.00, reward normalized=-1.99/5.54, grad norm= 76.65, loss_value= 190.16, loss_actor= 12.20, target value: -12.53: 72%|#######2 | 7200/10000 [00:09<00:04, 665.89it/s]
1648+
reward: -1.84 (r0 = -2.83), reward eval: reward: 0.00, reward normalized=-1.71/5.85, grad norm= 102.12, loss_value= 245.59, loss_actor= 11.58, target value: -10.91: 72%|#######2 | 7200/10000 [00:10<00:04, 665.89it/s]
1649+
reward: -1.84 (r0 = -2.83), reward eval: reward: 0.00, reward normalized=-1.71/5.85, grad norm= 102.12, loss_value= 245.59, loss_actor= 11.58, target value: -10.91: 80%|######## | 8000/10000 [00:11<00:03, 603.70it/s]
1650+
reward: -4.98 (r0 = -2.83), reward eval: reward: 0.00, reward normalized=-2.39/4.97, grad norm= 78.56, loss_value= 187.75, loss_actor= 14.39, target value: -16.04: 80%|######## | 8000/10000 [00:12<00:03, 603.70it/s]
1651+
reward: -4.98 (r0 = -2.83), reward eval: reward: 0.00, reward normalized=-2.39/4.97, grad norm= 78.56, loss_value= 187.75, loss_actor= 14.39, target value: -16.04: 88%|########8 | 8800/10000 [00:13<00:02, 567.09it/s]
1652+
reward: -3.58 (r0 = -2.83), reward eval: reward: -4.89, reward normalized=-2.75/4.99, grad norm= 72.07, loss_value= 206.85, loss_actor= 16.73, target value: -18.27: 88%|########8 | 8800/10000 [00:16<00:02, 567.09it/s]
1653+
reward: -3.58 (r0 = -2.83), reward eval: reward: -4.89, reward normalized=-2.75/4.99, grad norm= 72.07, loss_value= 206.85, loss_actor= 16.73, target value: -18.27: 96%|#########6| 9600/10000 [00:17<00:01, 366.93it/s]
1654+
reward: -5.36 (r0 = -2.83), reward eval: reward: -4.89, reward normalized=-2.69/5.31, grad norm= 122.46, loss_value= 278.56, loss_actor= 15.59, target value: -19.31: 96%|#########6| 9600/10000 [00:17<00:01, 366.93it/s]
1655+
reward: -5.36 (r0 = -2.83), reward eval: reward: -4.89, reward normalized=-2.69/5.31, grad norm= 122.46, loss_value= 278.56, loss_actor= 15.59, target value: -19.31: : 10400it [00:19, 338.76it/s]
1656+
reward: -4.41 (r0 = -2.83), reward eval: reward: -4.89, reward normalized=-3.57/4.31, grad norm= 100.75, loss_value= 213.60, loss_actor= 21.82, target value: -25.52: : 10400it [00:20, 338.76it/s]
16571657
16581658
16591659
@@ -1723,7 +1723,7 @@ To iterate further on this loss module we might consider:
17231723

17241724
.. rst-class:: sphx-glr-timing
17251725

1726-
**Total running time of the script:** ( 0 minutes 32.366 seconds)
1726+
**Total running time of the script:** ( 0 minutes 32.324 seconds)
17271727

17281728

17291729
.. _sphx_glr_download_advanced_coding_ddpg.py:

_sources/advanced/dynamic_quantization_tutorial.rst.txt

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -517,9 +517,9 @@ models run single threaded.
517517
.. code-block:: none
518518
519519
loss: 5.167
520-
elapsed time (seconds): 196.7
520+
elapsed time (seconds): 198.1
521521
loss: 5.168
522-
elapsed time (seconds): 113.2
522+
elapsed time (seconds): 114.6
523523
524524
525525
@@ -541,7 +541,7 @@ Thanks for reading! As always, we welcome any feedback, so please create an issu
541541

542542
.. rst-class:: sphx-glr-timing
543543

544-
**Total running time of the script:** ( 5 minutes 18.914 seconds)
544+
**Total running time of the script:** ( 5 minutes 21.872 seconds)
545545

546546

547547
.. _sphx_glr_download_advanced_dynamic_quantization_tutorial.py:

_sources/advanced/neural_style_tutorial.rst.txt

Lines changed: 17 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -410,20 +410,22 @@ network to evaluation mode using ``.eval()``.
410410
Downloading: "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/vgg19-dcbb9e9d.pth
411411
412412
0%| | 0.00/548M [00:00<?, ?B/s]
413-
8%|7 | 41.4M/548M [00:00<00:01, 434MB/s]
414-
15%|#5 | 84.4M/548M [00:00<00:01, 443MB/s]
415-
23%|##3 | 127M/548M [00:00<00:00, 445MB/s]
416-
31%|### | 170M/548M [00:00<00:00, 432MB/s]
417-
38%|###8 | 211M/548M [00:00<00:00, 413MB/s]
418-
46%|####5 | 250M/548M [00:00<00:00, 412MB/s]
419-
53%|#####3 | 292M/548M [00:00<00:00, 419MB/s]
420-
61%|###### | 334M/548M [00:00<00:00, 424MB/s]
421-
69%|######8 | 376M/548M [00:00<00:00, 429MB/s]
422-
76%|#######6 | 418M/548M [00:01<00:00, 433MB/s]
423-
84%|########3 | 459M/548M [00:01<00:00, 411MB/s]
424-
91%|######### | 498M/548M [00:01<00:00, 404MB/s]
425-
98%|#########8| 537M/548M [00:01<00:00, 380MB/s]
426-
100%|##########| 548M/548M [00:01<00:00, 411MB/s]
413+
5%|5 | 29.2M/548M [00:00<00:01, 307MB/s]
414+
12%|#2 | 67.2M/548M [00:00<00:01, 360MB/s]
415+
19%|#9 | 104M/548M [00:00<00:01, 373MB/s]
416+
26%|##5 | 140M/548M [00:00<00:01, 334MB/s]
417+
31%|###1 | 172M/548M [00:00<00:01, 333MB/s]
418+
38%|###7 | 206M/548M [00:00<00:01, 338MB/s]
419+
44%|####3 | 240M/548M [00:00<00:00, 343MB/s]
420+
50%|##### | 275M/548M [00:00<00:00, 352MB/s]
421+
56%|#####6 | 309M/548M [00:00<00:00, 348MB/s]
422+
63%|######2 | 343M/548M [00:01<00:00, 350MB/s]
423+
70%|######9 | 383M/548M [00:01<00:00, 370MB/s]
424+
77%|#######7 | 422M/548M [00:01<00:00, 384MB/s]
425+
84%|########4 | 462M/548M [00:01<00:00, 395MB/s]
426+
92%|#########1| 502M/548M [00:01<00:00, 402MB/s]
427+
99%|#########8| 541M/548M [00:01<00:00, 394MB/s]
428+
100%|##########| 548M/548M [00:01<00:00, 367MB/s]
427429
428430
429431
@@ -768,7 +770,7 @@ Finally, we can run the algorithm.
768770
769771
.. rst-class:: sphx-glr-timing
770772

771-
**Total running time of the script:** ( 0 minutes 11.467 seconds)
773+
**Total running time of the script:** ( 0 minutes 11.635 seconds)
772774

773775

774776
.. _sphx_glr_download_advanced_neural_style_tutorial.py:

_sources/advanced/numpy_extensions_tutorial.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -303,7 +303,7 @@ The backward pass computes the gradient ``wrt`` the input and the gradient ``wrt
303303
304304
.. rst-class:: sphx-glr-timing
305305

306-
**Total running time of the script:** ( 0 minutes 0.369 seconds)
306+
**Total running time of the script:** ( 0 minutes 0.365 seconds)
307307

308308

309309
.. _sphx_glr_download_advanced_numpy_extensions_tutorial.py:

0 commit comments

Comments
 (0)