|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": { |
| 7 | + "collapsed": false |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "# For tips on running notebooks in Google Colab, see\n", |
| 12 | + "# https://pytorch.org/tutorials/beginner/colab\n", |
| 13 | + "%matplotlib inline" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "markdown", |
| 18 | + "metadata": {}, |
| 19 | + "source": [ |
| 20 | + "[Introduction to ONNX](intro_onnx.html) \\|\\| [Exporting a PyTorch model\n", |
| 21 | + "to ONNX](export_simple_model_to_onnx_tutorial.html) \\|\\| [Extending the\n", |
| 22 | + "ONNX exporter operator support](onnx_registry_tutorial.html) \\|\\|\n", |
| 23 | + "**\\`Export a model with control flow to ONNX**\n", |
| 24 | + "\n", |
| 25 | + "Export a model with control flow to ONNX\n", |
| 26 | + "========================================\n", |
| 27 | + "\n", |
| 28 | + "**Author**: [Xavier Dupré](https://github.com/xadupre)\n" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "metadata": {}, |
| 34 | + "source": [ |
| 35 | + "Overview\n", |
| 36 | + "========\n", |
| 37 | + "\n", |
| 38 | + "This tutorial demonstrates how to handle control flow logic while\n", |
| 39 | + "exporting a PyTorch model to ONNX. It highlights the challenges of\n", |
| 40 | + "exporting conditional statements directly and provides solutions to\n", |
| 41 | + "circumvent them.\n", |
| 42 | + "\n", |
| 43 | + "Conditional logic cannot be exported into ONNX unless they refactored to\n", |
| 44 | + "use `torch.cond`{.interpreted-text role=\"func\"}. Let\\'s start with a\n", |
| 45 | + "simple model implementing a test.\n", |
| 46 | + "\n", |
| 47 | + "What you will learn:\n", |
| 48 | + "\n", |
| 49 | + "- How to refactor the model to use `torch.cond`{.interpreted-text\n", |
| 50 | + " role=\"func\"} for exporting.\n", |
| 51 | + "- How to export a model with control flow logic to ONNX.\n", |
| 52 | + "- How to optimize the exported model using the ONNX optimizer.\n", |
| 53 | + "\n", |
| 54 | + "Prerequisites\n", |
| 55 | + "-------------\n", |
| 56 | + "\n", |
| 57 | + "- `torch >= 2.6`\n" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "code", |
| 62 | + "execution_count": null, |
| 63 | + "metadata": { |
| 64 | + "collapsed": false |
| 65 | + }, |
| 66 | + "outputs": [], |
| 67 | + "source": [ |
| 68 | + "import torch" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "markdown", |
| 73 | + "metadata": {}, |
| 74 | + "source": [ |
| 75 | + "Define the Models\n", |
| 76 | + "=================\n", |
| 77 | + "\n", |
| 78 | + "Two models are defined:\n", |
| 79 | + "\n", |
| 80 | + "`ForwardWithControlFlowTest`: A model with a forward method containing\n", |
| 81 | + "an if-else conditional.\n", |
| 82 | + "\n", |
| 83 | + "`ModelWithControlFlowTest`: A model that incorporates\n", |
| 84 | + "`ForwardWithControlFlowTest` as part of a simple MLP. The models are\n", |
| 85 | + "tested with a random input tensor to confirm they execute as expected.\n" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "code", |
| 90 | + "execution_count": null, |
| 91 | + "metadata": { |
| 92 | + "collapsed": false |
| 93 | + }, |
| 94 | + "outputs": [], |
| 95 | + "source": [ |
| 96 | + "class ForwardWithControlFlowTest(torch.nn.Module):\n", |
| 97 | + " def forward(self, x):\n", |
| 98 | + " if x.sum():\n", |
| 99 | + " return x * 2\n", |
| 100 | + " return -x\n", |
| 101 | + "\n", |
| 102 | + "\n", |
| 103 | + "class ModelWithControlFlowTest(torch.nn.Module):\n", |
| 104 | + " def __init__(self):\n", |
| 105 | + " super().__init__()\n", |
| 106 | + " self.mlp = torch.nn.Sequential(\n", |
| 107 | + " torch.nn.Linear(3, 2),\n", |
| 108 | + " torch.nn.Linear(2, 1),\n", |
| 109 | + " ForwardWithControlFlowTest(),\n", |
| 110 | + " )\n", |
| 111 | + "\n", |
| 112 | + " def forward(self, x):\n", |
| 113 | + " out = self.mlp(x)\n", |
| 114 | + " return out\n", |
| 115 | + "\n", |
| 116 | + "\n", |
| 117 | + "model = ModelWithControlFlowTest()" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "markdown", |
| 122 | + "metadata": {}, |
| 123 | + "source": [ |
| 124 | + "Exporting the Model: First Attempt\n", |
| 125 | + "==================================\n", |
| 126 | + "\n", |
| 127 | + "Exporting this model using torch.export.export fails because the control\n", |
| 128 | + "flow logic in the forward pass creates a graph break that the exporter\n", |
| 129 | + "cannot handle. This behavior is expected, as conditional logic not\n", |
| 130 | + "written using `torch.cond`{.interpreted-text role=\"func\"} is\n", |
| 131 | + "unsupported.\n", |
| 132 | + "\n", |
| 133 | + "A try-except block is used to capture the expected failure during the\n", |
| 134 | + "export process. If the export unexpectedly succeeds, an `AssertionError`\n", |
| 135 | + "is raised.\n" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": null, |
| 141 | + "metadata": { |
| 142 | + "collapsed": false |
| 143 | + }, |
| 144 | + "outputs": [], |
| 145 | + "source": [ |
| 146 | + "x = torch.randn(3)\n", |
| 147 | + "model(x)\n", |
| 148 | + "\n", |
| 149 | + "try:\n", |
| 150 | + " torch.export.export(model, (x,), strict=False)\n", |
| 151 | + " raise AssertionError(\"This export should failed unless PyTorch now supports this model.\")\n", |
| 152 | + "except Exception as e:\n", |
| 153 | + " print(e)" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "markdown", |
| 158 | + "metadata": {}, |
| 159 | + "source": [ |
| 160 | + "Using `torch.onnx.export`{.interpreted-text role=\"func\"} with JIT\n", |
| 161 | + "Tracing\n", |
| 162 | + "\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\--\n", |
| 163 | + "\n", |
| 164 | + "When exporting the model using `torch.onnx.export`{.interpreted-text\n", |
| 165 | + "role=\"func\"} with the dynamo=True argument, the exporter defaults to\n", |
| 166 | + "using JIT tracing. This fallback allows the model to export, but the\n", |
| 167 | + "resulting ONNX graph may not faithfully represent the original model\n", |
| 168 | + "logic due to the limitations of tracing.\n" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "metadata": { |
| 175 | + "collapsed": false |
| 176 | + }, |
| 177 | + "outputs": [], |
| 178 | + "source": [ |
| 179 | + "onnx_program = torch.onnx.export(model, (x,), dynamo=True) \n", |
| 180 | + "print(onnx_program.model)" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "markdown", |
| 185 | + "metadata": {}, |
| 186 | + "source": [ |
| 187 | + "Suggested Patch: Refactoring with `torch.cond`{.interpreted-text\n", |
| 188 | + "role=\"func\"}\n", |
| 189 | + "\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\--\n", |
| 190 | + "\n", |
| 191 | + "To make the control flow exportable, the tutorial demonstrates replacing\n", |
| 192 | + "the forward method in `ForwardWithControlFlowTest` with a refactored\n", |
| 193 | + "version that uses `torch.cond`{.interpreted-text role=\"func\"}\\`.\n", |
| 194 | + "\n", |
| 195 | + "Details of the Refactoring:\n", |
| 196 | + "\n", |
| 197 | + "Two helper functions (identity2 and neg) represent the branches of the\n", |
| 198 | + "conditional logic: \\* `torch.cond`{.interpreted-text role=\"func\"}[ is\n", |
| 199 | + "used to specify the condition and the two branches along with the input\n", |
| 200 | + "arguments. \\* The updated forward method is then dynamically assigned to\n", |
| 201 | + "the ]{.title-ref}[ForwardWithControlFlowTest]{.title-ref}\\` instance\n", |
| 202 | + "within the model. A list of submodules is printed to confirm the\n", |
| 203 | + "replacement.\n" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "code", |
| 208 | + "execution_count": null, |
| 209 | + "metadata": { |
| 210 | + "collapsed": false |
| 211 | + }, |
| 212 | + "outputs": [], |
| 213 | + "source": [ |
| 214 | + "def new_forward(x):\n", |
| 215 | + " def identity2(x):\n", |
| 216 | + " return x * 2\n", |
| 217 | + "\n", |
| 218 | + " def neg(x):\n", |
| 219 | + " return -x\n", |
| 220 | + "\n", |
| 221 | + " return torch.cond(x.sum() > 0, identity2, neg, (x,))\n", |
| 222 | + "\n", |
| 223 | + "\n", |
| 224 | + "print(\"the list of submodules\")\n", |
| 225 | + "for name, mod in model.named_modules():\n", |
| 226 | + " print(name, type(mod))\n", |
| 227 | + " if isinstance(mod, ForwardWithControlFlowTest):\n", |
| 228 | + " mod.forward = new_forward" |
| 229 | + ] |
| 230 | + }, |
| 231 | + { |
| 232 | + "cell_type": "markdown", |
| 233 | + "metadata": {}, |
| 234 | + "source": [ |
| 235 | + "Let\\'s see what the FX graph looks like.\n" |
| 236 | + ] |
| 237 | + }, |
| 238 | + { |
| 239 | + "cell_type": "code", |
| 240 | + "execution_count": null, |
| 241 | + "metadata": { |
| 242 | + "collapsed": false |
| 243 | + }, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "print(torch.export.export(model, (x,), strict=False))" |
| 247 | + ] |
| 248 | + }, |
| 249 | + { |
| 250 | + "cell_type": "markdown", |
| 251 | + "metadata": {}, |
| 252 | + "source": [ |
| 253 | + "Let\\'s export again.\n" |
| 254 | + ] |
| 255 | + }, |
| 256 | + { |
| 257 | + "cell_type": "code", |
| 258 | + "execution_count": null, |
| 259 | + "metadata": { |
| 260 | + "collapsed": false |
| 261 | + }, |
| 262 | + "outputs": [], |
| 263 | + "source": [ |
| 264 | + "onnx_program = torch.onnx.export(model, (x,), dynamo=True) \n", |
| 265 | + "print(onnx_program.model)" |
| 266 | + ] |
| 267 | + }, |
| 268 | + { |
| 269 | + "cell_type": "markdown", |
| 270 | + "metadata": {}, |
| 271 | + "source": [ |
| 272 | + "We can optimize the model and get rid of the model local functions\n", |
| 273 | + "created to capture the control flow branches.\n" |
| 274 | + ] |
| 275 | + }, |
| 276 | + { |
| 277 | + "cell_type": "code", |
| 278 | + "execution_count": null, |
| 279 | + "metadata": { |
| 280 | + "collapsed": false |
| 281 | + }, |
| 282 | + "outputs": [], |
| 283 | + "source": [ |
| 284 | + "onnx_program.optimize() \n", |
| 285 | + "print(onnx_program.model)" |
| 286 | + ] |
| 287 | + }, |
| 288 | + { |
| 289 | + "cell_type": "markdown", |
| 290 | + "metadata": {}, |
| 291 | + "source": [ |
| 292 | + "Conclusion\n", |
| 293 | + "==========\n", |
| 294 | + "\n", |
| 295 | + "This tutorial demonstrates the challenges of exporting models with\n", |
| 296 | + "conditional logic to ONNX and presents a practical solution using\n", |
| 297 | + "`torch.cond`{.interpreted-text role=\"func\"}. While the default exporters\n", |
| 298 | + "may fail or produce imperfect graphs, refactoring the model\\'s logic\n", |
| 299 | + "ensures compatibility and generates a faithful ONNX representation.\n", |
| 300 | + "\n", |
| 301 | + "By understanding these techniques, we can overcome common pitfalls when\n", |
| 302 | + "working with control flow in PyTorch models and ensure smooth\n", |
| 303 | + "integration with ONNX workflows.\n", |
| 304 | + "\n", |
| 305 | + "Further reading\n", |
| 306 | + "===============\n", |
| 307 | + "\n", |
| 308 | + "The list below refers to tutorials that ranges from basic examples to\n", |
| 309 | + "advanced scenarios, not necessarily in the order they are listed. Feel\n", |
| 310 | + "free to jump directly to specific topics of your interest or sit tight\n", |
| 311 | + "and have fun going through all of them to learn all there is about the\n", |
| 312 | + "ONNX exporter.\n", |
| 313 | + "\n", |
| 314 | + "::: {.toctree hidden=\"\"}\n", |
| 315 | + ":::\n" |
| 316 | + ] |
| 317 | + } |
| 318 | + ], |
| 319 | + "metadata": { |
| 320 | + "kernelspec": { |
| 321 | + "display_name": "Python 3", |
| 322 | + "language": "python", |
| 323 | + "name": "python3" |
| 324 | + }, |
| 325 | + "language_info": { |
| 326 | + "codemirror_mode": { |
| 327 | + "name": "ipython", |
| 328 | + "version": 3 |
| 329 | + }, |
| 330 | + "file_extension": ".py", |
| 331 | + "mimetype": "text/x-python", |
| 332 | + "name": "python", |
| 333 | + "nbconvert_exporter": "python", |
| 334 | + "pygments_lexer": "ipython3", |
| 335 | + "version": "3.10.12" |
| 336 | + } |
| 337 | + }, |
| 338 | + "nbformat": 4, |
| 339 | + "nbformat_minor": 0 |
| 340 | +} |
0 commit comments