|
| 1 | +import torch.nn as nn |
| 2 | + |
| 3 | + |
| 4 | +class TokensToQKV(nn.Module): |
| 5 | + def __init__(self, to_dim, from_dim, latent_dim): |
| 6 | + super().__init__() |
| 7 | + self.q = nn.Linear(to_dim, latent_dim) |
| 8 | + self.k = nn.Linear(from_dim, latent_dim) |
| 9 | + self.v = nn.Linear(from_dim, latent_dim) |
| 10 | + |
| 11 | + def forward(self, X_to, X_from): |
| 12 | + Q = self.q(X_to) |
| 13 | + K = self.k(X_from) |
| 14 | + V = self.v(X_from) |
| 15 | + return Q, K, V |
| 16 | + |
| 17 | + |
| 18 | +class SplitHeads(nn.Module): |
| 19 | + def __init__(self, num_heads): |
| 20 | + super().__init__() |
| 21 | + self.num_heads = num_heads |
| 22 | + |
| 23 | + def forward(self, Q, K, V): |
| 24 | + batch_size, to_num, latent_dim = Q.shape |
| 25 | + _, from_num, _ = K.shape |
| 26 | + d_tensor = latent_dim // self.num_heads |
| 27 | + Q = Q.reshape(batch_size, to_num, self.num_heads, d_tensor).transpose(1, 2) |
| 28 | + K = K.reshape(batch_size, from_num, self.num_heads, d_tensor).transpose(1, 2) |
| 29 | + V = V.reshape(batch_size, from_num, self.num_heads, d_tensor).transpose(1, 2) |
| 30 | + return Q, K, V |
| 31 | + |
| 32 | + |
| 33 | +class Attention(nn.Module): |
| 34 | + def __init__(self, latent_dim, to_dim): |
| 35 | + super().__init__() |
| 36 | + self.softmax = nn.Softmax(dim=-1) |
| 37 | + self.out = nn.Linear(latent_dim, to_dim) |
| 38 | + |
| 39 | + def forward(self, Q, K, V): |
| 40 | + batch_size, n_heads, to_num, d_in = Q.shape |
| 41 | + attn = self.softmax(Q @ K.transpose(2, 3) / d_in) |
| 42 | + out = attn @ V |
| 43 | + out = self.out(out.transpose(1, 2).reshape(batch_size, to_num, n_heads * d_in)) |
| 44 | + return out, attn |
| 45 | + |
| 46 | + |
| 47 | +class SkipLayerNorm(nn.Module): |
| 48 | + def __init__(self, to_len, to_dim): |
| 49 | + super().__init__() |
| 50 | + self.layer_norm = nn.LayerNorm((to_len, to_dim)) |
| 51 | + |
| 52 | + def forward(self, x_0, x_1): |
| 53 | + return self.layer_norm(x_0 + x_1) |
| 54 | + |
| 55 | + |
| 56 | +class FFN(nn.Module): |
| 57 | + def __init__(self, to_dim, hidden_dim, dropout_rate=0.2): |
| 58 | + super().__init__() |
| 59 | + self.FFN = nn.Sequential( |
| 60 | + nn.Linear(to_dim, hidden_dim), |
| 61 | + nn.ReLU(), |
| 62 | + nn.Linear(hidden_dim, to_dim), |
| 63 | + nn.Dropout(dropout_rate), |
| 64 | + ) |
| 65 | + |
| 66 | + def forward(self, X): |
| 67 | + return self.FFN(X) |
| 68 | + |
| 69 | + |
| 70 | +class AttentionBlock(nn.Module): |
| 71 | + def __init__(self, to_dim, to_len, from_dim, latent_dim, num_heads): |
| 72 | + super().__init__() |
| 73 | + self.tokens_to_qkv = TokensToQKV(to_dim, from_dim, latent_dim) |
| 74 | + self.split_heads = SplitHeads(num_heads) |
| 75 | + self.attention = Attention(latent_dim, to_dim) |
| 76 | + self.skip = SkipLayerNorm(to_len, to_dim) |
| 77 | + |
| 78 | + def forward(self, X_to, X_from): |
| 79 | + Q, K, V = self.tokens_to_qkv(X_to, X_from) |
| 80 | + Q, K, V = self.split_heads(Q, K, V) |
| 81 | + out, attention = self.attention(Q, K, V) |
| 82 | + out = self.skip(X_to, out) |
| 83 | + return out |
| 84 | + |
| 85 | + |
| 86 | +class EncoderTransformerBlock(nn.Module): |
| 87 | + def __init__(self, to_dim, to_len, latent_dim, num_heads): |
| 88 | + super().__init__() |
| 89 | + self.attention_block = AttentionBlock( |
| 90 | + to_dim, to_len, to_dim, latent_dim, num_heads |
| 91 | + ) |
| 92 | + self.FFN = FFN(to_dim, 4 * to_dim) |
| 93 | + self.skip = SkipLayerNorm(to_len, to_dim) |
| 94 | + |
| 95 | + def forward(self, X_to): |
| 96 | + X_to = self.attention_block(X_to, X_to) |
| 97 | + X_out = self.FFN(X_to) |
| 98 | + return self.skip(X_out, X_to) |
| 99 | + |
| 100 | + |
| 101 | +class DecoderTransformerBlock(nn.Module): |
| 102 | + def __init__(self, to_dim, to_len, from_dim, latent_dim, num_heads): |
| 103 | + super().__init__() |
| 104 | + self.attention_block = AttentionBlock( |
| 105 | + to_dim, to_len, from_dim, latent_dim, num_heads |
| 106 | + ) |
| 107 | + self.encoder_block = EncoderTransformerBlock( |
| 108 | + to_dim, to_len, latent_dim, num_heads |
| 109 | + ) |
| 110 | + |
| 111 | + def forward(self, X_to, X_from): |
| 112 | + X_to = self.attention_block(X_to, X_from) |
| 113 | + X_to = self.encoder_block(X_to) |
| 114 | + return X_to |
| 115 | + |
| 116 | + |
| 117 | +class TransformerEncoder(nn.Module): |
| 118 | + def __init__(self, num_blocks, to_dim, to_len, latent_dim, num_heads): |
| 119 | + super().__init__() |
| 120 | + self.encoder = nn.ModuleList( |
| 121 | + [ |
| 122 | + EncoderTransformerBlock(to_dim, to_len, latent_dim, num_heads) |
| 123 | + for i in range(num_blocks) |
| 124 | + ] |
| 125 | + ) |
| 126 | + |
| 127 | + def forward(self, X_to): |
| 128 | + for i in range(len(self.encoder)): |
| 129 | + X_to = self.encoder[i](X_to) |
| 130 | + return X_to |
| 131 | + |
| 132 | + |
| 133 | +class TransformerDecoder(nn.Module): |
| 134 | + def __init__(self, num_blocks, to_dim, to_len, from_dim, latent_dim, num_heads): |
| 135 | + super().__init__() |
| 136 | + self.decoder = nn.ModuleList( |
| 137 | + [ |
| 138 | + DecoderTransformerBlock(to_dim, to_len, from_dim, latent_dim, num_heads) |
| 139 | + for i in range(num_blocks) |
| 140 | + ] |
| 141 | + ) |
| 142 | + |
| 143 | + def forward(self, X_to, X_from): |
| 144 | + for i in range(len(self.decoder)): |
| 145 | + X_to = self.decoder[i](X_to, X_from) |
| 146 | + return X_to |
| 147 | + |
| 148 | + |
| 149 | +class Transformer(nn.Module): |
| 150 | + def __init__( |
| 151 | + self, num_blocks, to_dim, to_len, from_dim, from_len, latent_dim, num_heads |
| 152 | + ): |
| 153 | + super().__init__() |
| 154 | + self.encoder = TransformerEncoder( |
| 155 | + num_blocks, to_dim, to_len, latent_dim, num_heads |
| 156 | + ) |
| 157 | + self.decoder = TransformerDecoder( |
| 158 | + num_blocks, from_dim, from_len, to_dim, latent_dim, num_heads |
| 159 | + ) |
| 160 | + |
| 161 | + def forward(self, X_to, X_from): |
| 162 | + X_to = self.encoder(X_to) |
| 163 | + X_out = self.decoder(X_from, X_to) |
| 164 | + return X_out |
0 commit comments