|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# |
| 3 | +# This source code is licensed under the MIT license found in the |
| 4 | +# LICENSE file in the root directory of this source tree. |
| 5 | + |
| 6 | +"""Efficient Trajectory Sampling with CompletedTrajRepertoire |
| 7 | +
|
| 8 | +This example demonstrates how to design a custom transform that filters trajectories during sampling, |
| 9 | +ensuring that only completed trajectories are present in sampled batches. This can be particularly useful |
| 10 | +when dealing with environments where some trajectories might be corrupted or never reach a done state, |
| 11 | +which could skew the learning process or lead to biased models. For instance, in robotics or autonomous |
| 12 | +driving, a trajectory might be interrupted due to external factors such as hardware failures or human |
| 13 | +intervention, resulting in incomplete or inconsistent data. By filtering out these incomplete trajectories, |
| 14 | +we can improve the quality of the training data and increase the robustness of our models. |
| 15 | +""" |
| 16 | + |
| 17 | +import torch |
| 18 | +from tensordict import TensorDictBase |
| 19 | +from torchrl.data import LazyTensorStorage, ReplayBuffer |
| 20 | +from torchrl.envs import GymEnv, TrajCounter, Transform |
| 21 | + |
| 22 | + |
| 23 | +class CompletedTrajectoryRepertoire(Transform): |
| 24 | + """ |
| 25 | + A transform that keeps track of completed trajectories and filters them out during sampling. |
| 26 | + """ |
| 27 | + |
| 28 | + def __init__(self): |
| 29 | + super().__init__() |
| 30 | + self.completed_trajectories = set() |
| 31 | + self.repertoire_tensor = torch.zeros((), dtype=torch.int64) |
| 32 | + |
| 33 | + def _update_repertoire(self, tensordict: TensorDictBase) -> None: |
| 34 | + """Updates the repertoire of completed trajectories.""" |
| 35 | + done = tensordict["next", "terminated"].squeeze(-1) |
| 36 | + traj = tensordict["next", "traj_count"][done].view(-1) |
| 37 | + if traj.numel(): |
| 38 | + self.completed_trajectories = self.completed_trajectories.union( |
| 39 | + traj.tolist() |
| 40 | + ) |
| 41 | + self.repertoire_tensor = torch.tensor( |
| 42 | + list(self.completed_trajectories), dtype=torch.int64 |
| 43 | + ) |
| 44 | + |
| 45 | + def _inv_call(self, tensordict: TensorDictBase) -> TensorDictBase: |
| 46 | + """Updates the repertoire of completed trajectories during insertion.""" |
| 47 | + self._update_repertoire(tensordict) |
| 48 | + return tensordict |
| 49 | + |
| 50 | + def forward(self, tensordict: TensorDictBase) -> TensorDictBase: |
| 51 | + """Filters out incomplete trajectories during sampling.""" |
| 52 | + traj = tensordict["next", "traj_count"] |
| 53 | + traj = traj.unsqueeze(-1) |
| 54 | + has_traj = (traj == self.repertoire_tensor).any(-1) |
| 55 | + has_traj = has_traj.view(tensordict.shape) |
| 56 | + return tensordict[has_traj] |
| 57 | + |
| 58 | + |
| 59 | +def main(): |
| 60 | + # Create a CartPole environment with trajectory counting |
| 61 | + env = GymEnv("CartPole-v1").append_transform(TrajCounter()) |
| 62 | + |
| 63 | + # Create a replay buffer with the completed trajectory repertoire transform |
| 64 | + buffer = ReplayBuffer( |
| 65 | + storage=LazyTensorStorage(1_000_000), transform=CompletedTrajectoryRepertoire() |
| 66 | + ) |
| 67 | + |
| 68 | + # Roll out the environment for 1000 steps |
| 69 | + while True: |
| 70 | + rollout = env.rollout(1000, break_when_any_done=False) |
| 71 | + if not rollout["next", "done"][-1].item(): |
| 72 | + break |
| 73 | + |
| 74 | + # Extend the replay buffer with the rollout |
| 75 | + buffer.extend(rollout) |
| 76 | + |
| 77 | + # Get the last trajectory count |
| 78 | + last_traj_count = rollout[-1]["next", "traj_count"].item() |
| 79 | + print(f"Incomplete trajectory: {last_traj_count}") |
| 80 | + |
| 81 | + # Sample from the replay buffer 10 times |
| 82 | + for _ in range(10): |
| 83 | + sample_traj_counts = buffer.sample(32)["next", "traj_count"].unique() |
| 84 | + print(f"Sampled trajectories: {sample_traj_counts}") |
| 85 | + assert last_traj_count not in sample_traj_counts |
| 86 | + |
| 87 | + |
| 88 | +if __name__ == "__main__": |
| 89 | + main() |
0 commit comments