|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "5f53cf70-25e6-4802-a5fe-cdaacf6deff7", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "from torch.utils._cxx_pytree import tree_map, tree_leaves, tree_flatten" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": 2, |
| 16 | + "id": "2111a53d-0714-42bf-9051-4eaee5d8a86c", |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "from tensordict import TensorDict, lazy_stack, is_tensor_collection\n", |
| 21 | + "import torch\n", |
| 22 | + "from tensordict._pytree import *" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": 3, |
| 28 | + "id": "951e96a4-4a8c-432a-80e3-c1d30d165ab7", |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [ |
| 31 | + { |
| 32 | + "data": { |
| 33 | + "text/plain": [ |
| 34 | + "99" |
| 35 | + ] |
| 36 | + }, |
| 37 | + "execution_count": 3, |
| 38 | + "metadata": {}, |
| 39 | + "output_type": "execute_result" |
| 40 | + } |
| 41 | + ], |
| 42 | + "source": [ |
| 43 | + "d_ = d = {}\n", |
| 44 | + "for _ in range(100):\n", |
| 45 | + " newd = {}\n", |
| 46 | + " d_[\"a\"] = newd\n", |
| 47 | + " d_[\"t\"] = torch.zeros((1,))\n", |
| 48 | + " d_ = newd\n", |
| 49 | + "td = TensorDict(d, batch_size=(1,))\n", |
| 50 | + "td.depth" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": 4, |
| 56 | + "id": "53df5c9e-aac3-4b84-95ed-9619273da95f", |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [ |
| 59 | + { |
| 60 | + "name": "stdout", |
| 61 | + "output_type": "stream", |
| 62 | + "text": [ |
| 63 | + "581 μs ± 9.34 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" |
| 64 | + ] |
| 65 | + } |
| 66 | + ], |
| 67 | + "source": [ |
| 68 | + "%%timeit\n", |
| 69 | + "tree_map(lambda x: x+1, td)" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": 5, |
| 75 | + "id": "7ff87f96-00c3-4134-926e-d2dba44d0b11", |
| 76 | + "metadata": {}, |
| 77 | + "outputs": [ |
| 78 | + { |
| 79 | + "name": "stdout", |
| 80 | + "output_type": "stream", |
| 81 | + "text": [ |
| 82 | + "2.32 ms ± 37.5 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" |
| 83 | + ] |
| 84 | + } |
| 85 | + ], |
| 86 | + "source": [ |
| 87 | + "%%timeit\n", |
| 88 | + "td + 1" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": 6, |
| 94 | + "id": "5e370705-afe2-44d0-bb79-088f4b4c7c75", |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [ |
| 97 | + { |
| 98 | + "name": "stdout", |
| 99 | + "output_type": "stream", |
| 100 | + "text": [ |
| 101 | + "694 μs ± 9.36 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" |
| 102 | + ] |
| 103 | + } |
| 104 | + ], |
| 105 | + "source": [ |
| 106 | + "%%timeit\n", |
| 107 | + "td.apply(lambda x: x+1)" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": 7, |
| 113 | + "id": "e3f93951-7be8-4be5-a385-735d456dc9d5", |
| 114 | + "metadata": {}, |
| 115 | + "outputs": [ |
| 116 | + { |
| 117 | + "data": { |
| 118 | + "text/plain": [ |
| 119 | + "torch.Size([1])" |
| 120 | + ] |
| 121 | + }, |
| 122 | + "execution_count": 7, |
| 123 | + "metadata": {}, |
| 124 | + "output_type": "execute_result" |
| 125 | + } |
| 126 | + ], |
| 127 | + "source": [ |
| 128 | + "tree_map(lambda x: x+1, td).batch_size" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "code", |
| 133 | + "execution_count": 8, |
| 134 | + "id": "6a76f7f9-a813-4cba-92c8-a90240050a99", |
| 135 | + "metadata": {}, |
| 136 | + "outputs": [], |
| 137 | + "source": [ |
| 138 | + "assert (tree_map(lambda x: x+1, td) == 1).all()" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": 9, |
| 144 | + "id": "8b6a46c1-6dbc-4aa4-868c-6891453efb32", |
| 145 | + "metadata": {}, |
| 146 | + "outputs": [ |
| 147 | + { |
| 148 | + "name": "stdout", |
| 149 | + "output_type": "stream", |
| 150 | + "text": [ |
| 151 | + "214 μs ± 2.42 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" |
| 152 | + ] |
| 153 | + } |
| 154 | + ], |
| 155 | + "source": [ |
| 156 | + "%%timeit\n", |
| 157 | + "tree_flatten(td)" |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "code", |
| 162 | + "execution_count": 10, |
| 163 | + "id": "68fbb5c4-1d89-4620-ac27-8761b97b18e8", |
| 164 | + "metadata": {}, |
| 165 | + "outputs": [ |
| 166 | + { |
| 167 | + "name": "stdout", |
| 168 | + "output_type": "stream", |
| 169 | + "text": [ |
| 170 | + "287 μs ± 7.88 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" |
| 171 | + ] |
| 172 | + } |
| 173 | + ], |
| 174 | + "source": [ |
| 175 | + "%%timeit\n", |
| 176 | + "list(td.values(True, True))" |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "code", |
| 181 | + "execution_count": 11, |
| 182 | + "id": "1fa58391-21b6-4f18-9b20-dd4165f7c877", |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "d_ = d = {}\n", |
| 187 | + "for _ in range(10):\n", |
| 188 | + " newd = {}\n", |
| 189 | + " d_[\"a\"] = newd\n", |
| 190 | + " d_[\"t\"] = torch.zeros((1,))\n", |
| 191 | + " d_ = newd\n", |
| 192 | + "tdls = TensorDict(d, batch_size=(1,))\n", |
| 193 | + "tdls.depth\n", |
| 194 | + "\n", |
| 195 | + "tdls = lazy_stack([tdls.clone() for _ in range(100)])" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "cell_type": "code", |
| 200 | + "execution_count": 12, |
| 201 | + "id": "d87daadc-0a5e-46c6-8382-f6599d199d36", |
| 202 | + "metadata": {}, |
| 203 | + "outputs": [ |
| 204 | + { |
| 205 | + "data": { |
| 206 | + "text/plain": [ |
| 207 | + "torch.Size([100, 1])" |
| 208 | + ] |
| 209 | + }, |
| 210 | + "execution_count": 12, |
| 211 | + "metadata": {}, |
| 212 | + "output_type": "execute_result" |
| 213 | + } |
| 214 | + ], |
| 215 | + "source": [ |
| 216 | + "tree_map(lambda x: x+1, tdls).batch_size" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "cell_type": "code", |
| 221 | + "execution_count": 13, |
| 222 | + "id": "015dbd32-cf97-4b60-9d56-550f82e7e238", |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [ |
| 225 | + { |
| 226 | + "name": "stdout", |
| 227 | + "output_type": "stream", |
| 228 | + "text": [ |
| 229 | + "6.07 ms ± 75.1 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" |
| 230 | + ] |
| 231 | + } |
| 232 | + ], |
| 233 | + "source": [ |
| 234 | + "%%timeit\n", |
| 235 | + "tree_map(lambda x: x+1, tdls)" |
| 236 | + ] |
| 237 | + }, |
| 238 | + { |
| 239 | + "cell_type": "code", |
| 240 | + "execution_count": 14, |
| 241 | + "id": "7cff3ea1-239c-4cab-9d47-2a7f31862b74", |
| 242 | + "metadata": {}, |
| 243 | + "outputs": [ |
| 244 | + { |
| 245 | + "name": "stdout", |
| 246 | + "output_type": "stream", |
| 247 | + "text": [ |
| 248 | + "6.29 ms ± 101 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" |
| 249 | + ] |
| 250 | + } |
| 251 | + ], |
| 252 | + "source": [ |
| 253 | + "%%timeit\n", |
| 254 | + "tdls + 1" |
| 255 | + ] |
| 256 | + }, |
| 257 | + { |
| 258 | + "cell_type": "code", |
| 259 | + "execution_count": 15, |
| 260 | + "id": "e2a0a78c-0401-4d6c-92c7-b3ddbe74de42", |
| 261 | + "metadata": {}, |
| 262 | + "outputs": [ |
| 263 | + { |
| 264 | + "name": "stdout", |
| 265 | + "output_type": "stream", |
| 266 | + "text": [ |
| 267 | + "7.1 ms ± 130 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" |
| 268 | + ] |
| 269 | + } |
| 270 | + ], |
| 271 | + "source": [ |
| 272 | + "%%timeit\n", |
| 273 | + "tdls.apply(lambda x: x+1)" |
| 274 | + ] |
| 275 | + }, |
| 276 | + { |
| 277 | + "cell_type": "code", |
| 278 | + "execution_count": null, |
| 279 | + "id": "2fc590d1-0774-4f79-90a2-98fe6b3ac2c3", |
| 280 | + "metadata": {}, |
| 281 | + "outputs": [], |
| 282 | + "source": [ |
| 283 | + "%%timeit\n", |
| 284 | + "tree_flatten(tdls)" |
| 285 | + ] |
| 286 | + }, |
| 287 | + { |
| 288 | + "cell_type": "code", |
| 289 | + "execution_count": null, |
| 290 | + "id": "579a2a89-802b-4f5b-9354-7a9cbb5530f5", |
| 291 | + "metadata": {}, |
| 292 | + "outputs": [], |
| 293 | + "source": [ |
| 294 | + "%%timeit\n", |
| 295 | + "list(tdls.values(True, True))" |
| 296 | + ] |
| 297 | + }, |
| 298 | + { |
| 299 | + "cell_type": "code", |
| 300 | + "execution_count": null, |
| 301 | + "id": "01f21ad4-57f6-4523-9b48-eb2697c9f8ec", |
| 302 | + "metadata": {}, |
| 303 | + "outputs": [], |
| 304 | + "source": [] |
| 305 | + } |
| 306 | + ], |
| 307 | + "metadata": { |
| 308 | + "kernelspec": { |
| 309 | + "display_name": "Python 3 (ipykernel)", |
| 310 | + "language": "python", |
| 311 | + "name": "python3" |
| 312 | + }, |
| 313 | + "language_info": { |
| 314 | + "codemirror_mode": { |
| 315 | + "name": "ipython", |
| 316 | + "version": 3 |
| 317 | + }, |
| 318 | + "file_extension": ".py", |
| 319 | + "mimetype": "text/x-python", |
| 320 | + "name": "python", |
| 321 | + "nbconvert_exporter": "python", |
| 322 | + "pygments_lexer": "ipython3", |
| 323 | + "version": "3.10.16" |
| 324 | + } |
| 325 | + }, |
| 326 | + "nbformat": 4, |
| 327 | + "nbformat_minor": 5 |
| 328 | +} |
0 commit comments