|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# |
| 3 | +# This source code is licensed under the MIT license found in the |
| 4 | +# LICENSE file in the root directory of this source tree. |
| 5 | + |
| 6 | +"""This script executes some envs across the Gym library with the explicit scope of testing the throughput using the various TorchRL components. |
| 7 | +
|
| 8 | +We test: |
| 9 | +- gym async envs embedded in a TorchRL's GymEnv wrapper, |
| 10 | +- ParallelEnv with regular GymEnv instances, |
| 11 | +- Data collector |
| 12 | +- Multiprocessed data collectors with parallel envs. |
| 13 | +
|
| 14 | +The tests are executed with various number of cpus, and on different devices. |
| 15 | +
|
| 16 | +""" |
| 17 | +import time |
| 18 | + |
| 19 | +import myosuite # noqa: F401 |
| 20 | +import tqdm |
| 21 | +from torchrl._utils import timeit |
| 22 | +from torchrl.collectors import ( |
| 23 | + MultiaSyncDataCollector, |
| 24 | + MultiSyncDataCollector, |
| 25 | + RandomPolicy, |
| 26 | + SyncDataCollector, |
| 27 | +) |
| 28 | +from torchrl.envs import EnvCreator, GymEnv, ParallelEnv |
| 29 | +from torchrl.envs.libs.gym import gym_backend as gym_bc, set_gym_backend |
| 30 | + |
| 31 | +if __name__ == "__main__": |
| 32 | + for envname in [ |
| 33 | + "HalfCheetah-v4", |
| 34 | + "CartPole-v1", |
| 35 | + "myoHandReachRandom-v0", |
| 36 | + "ALE/Breakout-v5", |
| 37 | + "CartPole-v1", |
| 38 | + ]: |
| 39 | + # the number of collectors won't affect the resources, just impacts how the envs are split in sub-sub-processes |
| 40 | + for num_workers, num_collectors in zip((8, 16, 32, 64), (2, 4, 8, 8)): |
| 41 | + with open( |
| 42 | + f"atari_{envname}_{num_workers}.txt".replace("/", "-"), "w+" |
| 43 | + ) as log: |
| 44 | + if "myo" in envname: |
| 45 | + gym_backend = "gym" |
| 46 | + else: |
| 47 | + gym_backend = "gymnasium" |
| 48 | + |
| 49 | + total_frames = num_workers * 10_000 |
| 50 | + |
| 51 | + # pure gym |
| 52 | + def make(envname=envname, gym_backend=gym_backend): |
| 53 | + with set_gym_backend(gym_backend): |
| 54 | + return gym_bc().make(envname) |
| 55 | + |
| 56 | + with set_gym_backend(gym_backend): |
| 57 | + env = gym_bc().vector.AsyncVectorEnv( |
| 58 | + [make for _ in range(num_workers)] |
| 59 | + ) |
| 60 | + env.reset() |
| 61 | + global_step = 0 |
| 62 | + times = [] |
| 63 | + start = time.time() |
| 64 | + print("Timer started.") |
| 65 | + for _ in tqdm.tqdm(range(total_frames // num_workers)): |
| 66 | + env.step(env.action_space.sample()) |
| 67 | + global_step += num_workers |
| 68 | + env.close() |
| 69 | + log.write( |
| 70 | + f"pure gym: {num_workers * 10_000 / (time.time() - start): 4.4f} fps\n" |
| 71 | + ) |
| 72 | + log.flush() |
| 73 | + |
| 74 | + # regular parallel env |
| 75 | + for device in ( |
| 76 | + "cuda:0", |
| 77 | + "cpu", |
| 78 | + ): |
| 79 | + |
| 80 | + def make(envname=envname, gym_backend=gym_backend, device=device): |
| 81 | + with set_gym_backend(gym_backend): |
| 82 | + return GymEnv(envname, device=device) |
| 83 | + |
| 84 | + env_make = EnvCreator(make) |
| 85 | + penv = ParallelEnv(num_workers, env_make) |
| 86 | + # warmup |
| 87 | + penv.rollout(2) |
| 88 | + pbar = tqdm.tqdm(total=num_workers * 10_000) |
| 89 | + t0 = time.time() |
| 90 | + for _ in range(100): |
| 91 | + data = penv.rollout(100, break_when_any_done=False) |
| 92 | + pbar.update(100 * num_workers) |
| 93 | + log.write( |
| 94 | + f"penv {device}: {num_workers * 10_000 / (time.time() - t0): 4.4f} fps\n" |
| 95 | + ) |
| 96 | + log.flush() |
| 97 | + penv.close() |
| 98 | + timeit.print() |
| 99 | + del penv |
| 100 | + |
| 101 | + for device in ("cuda:0", "cpu"): |
| 102 | + |
| 103 | + def make(envname=envname, gym_backend=gym_backend, device=device): |
| 104 | + with set_gym_backend(gym_backend): |
| 105 | + return GymEnv(envname, device=device) |
| 106 | + |
| 107 | + env_make = EnvCreator(make) |
| 108 | + # penv = SerialEnv(num_workers, env_make) |
| 109 | + penv = ParallelEnv(num_workers, env_make) |
| 110 | + collector = SyncDataCollector( |
| 111 | + penv, |
| 112 | + RandomPolicy(penv.action_spec), |
| 113 | + frames_per_batch=1024, |
| 114 | + total_frames=num_workers * 10_000, |
| 115 | + ) |
| 116 | + pbar = tqdm.tqdm(total=num_workers * 10_000) |
| 117 | + total_frames = 0 |
| 118 | + for i, data in enumerate(collector): |
| 119 | + if i == num_collectors: |
| 120 | + t0 = time.time() |
| 121 | + if i >= num_collectors: |
| 122 | + total_frames += data.numel() |
| 123 | + pbar.update(data.numel()) |
| 124 | + pbar.set_description( |
| 125 | + f"single collector + torchrl penv: {total_frames / (time.time() - t0): 4.4f} fps" |
| 126 | + ) |
| 127 | + log.write( |
| 128 | + f"single collector + torchrl penv {device}: {total_frames / (time.time() - t0): 4.4f} fps\n" |
| 129 | + ) |
| 130 | + log.flush() |
| 131 | + collector.shutdown() |
| 132 | + del collector |
| 133 | + |
| 134 | + for device in ( |
| 135 | + "cuda:0", |
| 136 | + "cpu", |
| 137 | + ): |
| 138 | + # gym parallel env |
| 139 | + def make_env( |
| 140 | + envname=envname, |
| 141 | + num_workers=num_workers, |
| 142 | + gym_backend=gym_backend, |
| 143 | + device=device, |
| 144 | + ): |
| 145 | + with set_gym_backend(gym_backend): |
| 146 | + penv = GymEnv(envname, num_envs=num_workers, device=device) |
| 147 | + return penv |
| 148 | + |
| 149 | + penv = make_env() |
| 150 | + # warmup |
| 151 | + penv.rollout(2) |
| 152 | + pbar = tqdm.tqdm(total=num_workers * 10_000) |
| 153 | + t0 = time.time() |
| 154 | + for _ in range(100): |
| 155 | + data = penv.rollout(100, break_when_any_done=False) |
| 156 | + pbar.update(100 * num_workers) |
| 157 | + log.write( |
| 158 | + f"gym penv {device}: {num_workers * 10_000 / (time.time() - t0): 4.4f} fps\n" |
| 159 | + ) |
| 160 | + log.flush() |
| 161 | + penv.close() |
| 162 | + del penv |
| 163 | + |
| 164 | + for device in ( |
| 165 | + "cuda:0", |
| 166 | + "cpu", |
| 167 | + ): |
| 168 | + # async collector |
| 169 | + # + torchrl parallel env |
| 170 | + def make_env( |
| 171 | + envname=envname, gym_backend=gym_backend, device=device |
| 172 | + ): |
| 173 | + with set_gym_backend(gym_backend): |
| 174 | + return GymEnv(envname, device=device) |
| 175 | + |
| 176 | + penv = ParallelEnv( |
| 177 | + num_workers // num_collectors, EnvCreator(make_env) |
| 178 | + ) |
| 179 | + collector = MultiaSyncDataCollector( |
| 180 | + [penv] * num_collectors, |
| 181 | + policy=RandomPolicy(penv.action_spec), |
| 182 | + frames_per_batch=1024, |
| 183 | + total_frames=num_workers * 10_000, |
| 184 | + device=device, |
| 185 | + ) |
| 186 | + pbar = tqdm.tqdm(total=num_workers * 10_000) |
| 187 | + total_frames = 0 |
| 188 | + for i, data in enumerate(collector): |
| 189 | + if i == num_collectors: |
| 190 | + t0 = time.time() |
| 191 | + if i >= num_collectors: |
| 192 | + total_frames += data.numel() |
| 193 | + pbar.update(data.numel()) |
| 194 | + pbar.set_description( |
| 195 | + f"collector + torchrl penv: {total_frames / (time.time() - t0): 4.4f} fps" |
| 196 | + ) |
| 197 | + log.write( |
| 198 | + f"async collector + torchrl penv {device}: {total_frames / (time.time() - t0): 4.4f} fps\n" |
| 199 | + ) |
| 200 | + log.flush() |
| 201 | + collector.shutdown() |
| 202 | + del collector |
| 203 | + |
| 204 | + for device in ( |
| 205 | + "cuda:0", |
| 206 | + "cpu", |
| 207 | + ): |
| 208 | + # async collector |
| 209 | + # + gym async env |
| 210 | + def make_env( |
| 211 | + envname=envname, |
| 212 | + num_workers=num_workers, |
| 213 | + gym_backend=gym_backend, |
| 214 | + device=device, |
| 215 | + ): |
| 216 | + with set_gym_backend(gym_backend): |
| 217 | + penv = GymEnv(envname, num_envs=num_workers, device=device) |
| 218 | + return penv |
| 219 | + |
| 220 | + penv = EnvCreator( |
| 221 | + lambda num_workers=num_workers // num_collectors: make_env( |
| 222 | + num_workers |
| 223 | + ) |
| 224 | + ) |
| 225 | + collector = MultiaSyncDataCollector( |
| 226 | + [penv] * num_collectors, |
| 227 | + policy=RandomPolicy(penv().action_spec), |
| 228 | + frames_per_batch=1024, |
| 229 | + total_frames=num_workers * 10_000, |
| 230 | + num_sub_threads=num_workers // num_collectors, |
| 231 | + device=device, |
| 232 | + ) |
| 233 | + pbar = tqdm.tqdm(total=num_workers * 10_000) |
| 234 | + total_frames = 0 |
| 235 | + for i, data in enumerate(collector): |
| 236 | + if i == num_collectors: |
| 237 | + t0 = time.time() |
| 238 | + if i >= num_collectors: |
| 239 | + total_frames += data.numel() |
| 240 | + pbar.update(data.numel()) |
| 241 | + pbar.set_description( |
| 242 | + f"{i} collector + gym penv: {total_frames / (time.time() - t0): 4.4f} fps" |
| 243 | + ) |
| 244 | + log.write( |
| 245 | + f"async collector + gym penv {device}: {total_frames / (time.time() - t0): 4.4f} fps\n" |
| 246 | + ) |
| 247 | + log.flush() |
| 248 | + collector.shutdown() |
| 249 | + del collector |
| 250 | + |
| 251 | + for device in ( |
| 252 | + "cuda:0", |
| 253 | + "cpu", |
| 254 | + ): |
| 255 | + # sync collector |
| 256 | + # + torchrl parallel env |
| 257 | + def make_env( |
| 258 | + envname=envname, gym_backend=gym_backend, device=device |
| 259 | + ): |
| 260 | + with set_gym_backend(gym_backend): |
| 261 | + return GymEnv(envname, device=device) |
| 262 | + |
| 263 | + penv = ParallelEnv( |
| 264 | + num_workers // num_collectors, EnvCreator(make_env) |
| 265 | + ) |
| 266 | + collector = MultiSyncDataCollector( |
| 267 | + [penv] * num_collectors, |
| 268 | + policy=RandomPolicy(penv.action_spec), |
| 269 | + frames_per_batch=1024, |
| 270 | + total_frames=num_workers * 10_000, |
| 271 | + device=device, |
| 272 | + ) |
| 273 | + pbar = tqdm.tqdm(total=num_workers * 10_000) |
| 274 | + total_frames = 0 |
| 275 | + for i, data in enumerate(collector): |
| 276 | + if i == num_collectors: |
| 277 | + t0 = time.time() |
| 278 | + if i >= num_collectors: |
| 279 | + total_frames += data.numel() |
| 280 | + pbar.update(data.numel()) |
| 281 | + pbar.set_description( |
| 282 | + f"collector + torchrl penv: {total_frames / (time.time() - t0): 4.4f} fps" |
| 283 | + ) |
| 284 | + log.write( |
| 285 | + f"sync collector + torchrl penv {device}: {total_frames / (time.time() - t0): 4.4f} fps\n" |
| 286 | + ) |
| 287 | + log.flush() |
| 288 | + collector.shutdown() |
| 289 | + del collector |
| 290 | + |
| 291 | + for device in ( |
| 292 | + "cuda:0", |
| 293 | + "cpu", |
| 294 | + ): |
| 295 | + # sync collector |
| 296 | + # + gym async env |
| 297 | + def make_env( |
| 298 | + envname=envname, |
| 299 | + num_workers=num_workers, |
| 300 | + gym_backend=gym_backend, |
| 301 | + device=device, |
| 302 | + ): |
| 303 | + with set_gym_backend(gym_backend): |
| 304 | + penv = GymEnv(envname, num_envs=num_workers, device=device) |
| 305 | + return penv |
| 306 | + |
| 307 | + penv = EnvCreator( |
| 308 | + lambda num_workers=num_workers // num_collectors: make_env( |
| 309 | + num_workers |
| 310 | + ) |
| 311 | + ) |
| 312 | + collector = MultiSyncDataCollector( |
| 313 | + [penv] * num_collectors, |
| 314 | + policy=RandomPolicy(penv().action_spec), |
| 315 | + frames_per_batch=1024, |
| 316 | + total_frames=num_workers * 10_000, |
| 317 | + num_sub_threads=num_workers // num_collectors, |
| 318 | + device=device, |
| 319 | + ) |
| 320 | + pbar = tqdm.tqdm(total=num_workers * 10_000) |
| 321 | + total_frames = 0 |
| 322 | + for i, data in enumerate(collector): |
| 323 | + if i == num_collectors: |
| 324 | + t0 = time.time() |
| 325 | + if i >= num_collectors: |
| 326 | + total_frames += data.numel() |
| 327 | + pbar.update(data.numel()) |
| 328 | + pbar.set_description( |
| 329 | + f"{i} collector + gym penv: {total_frames / (time.time() - t0): 4.4f} fps" |
| 330 | + ) |
| 331 | + log.write( |
| 332 | + f"sync collector + gym penv {device}: {total_frames / (time.time() - t0): 4.4f} fps\n" |
| 333 | + ) |
| 334 | + log.flush() |
| 335 | + collector.shutdown() |
| 336 | + del collector |
| 337 | + exit() |
0 commit comments