Skip to content

Maintainer Notes

vfdev edited this page Aug 23, 2018 · 37 revisions

How to create and upload pip/conda builds

At first, we build universal wheels and tars:

git checkout vX.Y.Z
python setup.py sdist bdist_wheel

Upload to pypi

twine upload dist/*

or for testing purposes it is possible to upload to test.pypi:

twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Build and upload conda package

NEED TO FIND SOME OTHER WAY TO BUILD IT

conda skeleton pypi pytorch-ignite

As conda pytorch dependency name (pytorch) is different of pip dependency torch, we need to modify pytorch-ignite/meta.yaml file and replace torch -> pytorch. If build with python3, comment also enum34.

conda config --set anaconda_upload yes
anaconda login
conda build . --python 3.6
conda build . --python 3.5
# Do not forget to uncomment enum34 dependency
conda build . --python 2.7

More info here

How to manually update documentation

Today the documentation is automatically built when PR is merged to the master. History of builds is not conserved. If you push manually some changes, they will be rewritten by the next doc deployment.

All you have to do to update the site is to modify the gh-pages branch. For example, regenerating docs is:

cd docs
pip install -r requirements.txt
make clean
make html
# copy build/html into gh-pages branch, commit, push

README

Side-by-side code compare

Image is created with PyCharm (Dracula Theme) with "Compare files" function and a screenshot resized to 1248x.

Ignite (left side):

model = Net()

train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.8)

criterion = torch.nn.NLLLoss()

max_epochs = 10
validate_every = 100
checkpoint_every = 100


trainer = create_supervised_trainer(model, optimizer, criterion)

evaluator = create_supervised_evaluator(model, metrics={'accuracy': BinaryAccuracy()})


@trainer.on(Events.ITERATION_COMPLETE)
def validate(trainer):
    if trainer.state.iteration % validate_every == 0:
        evaluator.run(val_loader)
        metrics = evaluator.state.metrics
        print("After {} iterations, binary accuracy = {:.2f}"
              .format(trainer.state.iteration, metrics['accuracy']))


checkpointer = ModelCheckpoint(checkpoint_dir, 'my_model',
                               save_interval=checkpoint_every, create_dir=True)
trainer.add_event_handler(Events.ITERATION_COMPLETE, checkpointer, {'mymodel': model})


trainer.run(train_loader, max_epochs=max_epochs)

and bare pytorch snippet (right side):

model = Net()

train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.8)

criterion = torch.nn.NLLLoss()

max_epochs = 10
validate_every = 100
checkpoint_every = 100


def validate(model, val_loader):
    model = model.eval()
    num_correct = 0
    num_examples = 0
    for batch in val_loader:
        input, target = batch
        output = model(input)
        correct = torch.eq(torch.round(output).type(target.type()), target).view(-1)
        num_correct += torch.sum(correct).item()
        num_examples += correct.shape[0]
    return num_correct / num_examples


def checkpoint(model, optimizer, checkpoint_dir):
    # ...
    pass


def train(model, optimizer, loss,
          train_loader, val_loader,
          max_epochs, validate_every,
          checkpoint_every, checkpoint_dir):
    model = model.train()
    iteration = 0

    for epoch in range(max_epochs):
        for batch in train_loader:
            optimizer.zero_grad()
            input, target = batch
            output = model(input)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()

            if iteration % validate_every == 0:
                binary_accuracy = validate(model, val_loader)
                print("After {} iterations, binary accuracy = {:.2f}"
                      .format(iterations, binary_accuracy))

            if iteration % checkpoint_every == 0:
                checkpoint(model, optimizer, checkpoint_dir)
            iteration += 1
Clone this wiki locally