|
| 1 | +import unittest |
| 2 | +import torch |
| 3 | +from torch import nn |
| 4 | +from torch.distributions import Normal |
| 5 | +from botorch_community.acquisition.latent_information_gain import LatentInformationGain |
| 6 | +from botorch_community.models.np_regression import NeuralProcessModel |
| 7 | + |
| 8 | +class TestLatentInformationGain(unittest.TestCase): |
| 9 | + def setUp(self): |
| 10 | + self.x_dim = 2 |
| 11 | + self.y_dim = 1 |
| 12 | + self.r_dim = 8 |
| 13 | + self.z_dim = 3 |
| 14 | + self.r_hidden_dims = [16, 16] |
| 15 | + self.z_hidden_dims = [32, 32] |
| 16 | + self.decoder_hidden_dims = [16, 16] |
| 17 | + self.num_samples = 10 |
| 18 | + self.model = NeuralProcessModel( |
| 19 | + r_hidden_dims = self.r_hidden_dims, |
| 20 | + z_hidden_dims = self.z_hidden_dims, |
| 21 | + decoder_hidden_dims = self.decoder_hidden_dims, |
| 22 | + x_dim=self.x_dim, |
| 23 | + y_dim=self.y_dim, |
| 24 | + r_dim=self.r_dim, |
| 25 | + z_dim=self.z_dim, |
| 26 | + ) |
| 27 | + self.acquisition_function = LatentInformationGain( |
| 28 | + model=self.model, |
| 29 | + num_samples=self.num_samples, |
| 30 | + ) |
| 31 | + self.context_x = torch.rand(10, self.x_dim) |
| 32 | + self.context_y = torch.rand(10, self.y_dim) |
| 33 | + self.candidate_x = torch.rand(5, self.x_dim) |
| 34 | + |
| 35 | + def test_initialization(self): |
| 36 | + self.assertEqual(self.acquisition_function.num_samples, self.num_samples) |
| 37 | + self.assertEqual(self.acquisition_function.model, self.model) |
| 38 | + |
| 39 | + def test_acquisition_shape(self): |
| 40 | + lig_score = self.acquisition_function.acquisition( |
| 41 | + candidate_x=self.candidate_x, |
| 42 | + context_x=self.context_x, |
| 43 | + context_y=self.context_y, |
| 44 | + ) |
| 45 | + self.assertTrue(torch.is_tensor(lig_score)) |
| 46 | + self.assertEqual(lig_score.shape, ()) |
| 47 | + |
| 48 | + def test_acquisition_kl(self): |
| 49 | + lig_score = self.acquisition_function.acquisition( |
| 50 | + candidate_x=self.candidate_x, |
| 51 | + context_x=self.context_x, |
| 52 | + context_y=self.context_y, |
| 53 | + ) |
| 54 | + self.assertGreaterEqual(lig_score.item(), 0) |
| 55 | + |
| 56 | + def test_acquisition_samples(self): |
| 57 | + lig_1 = self.acquisition_function.acquisition( |
| 58 | + candidate_x=self.candidate_x, |
| 59 | + context_x=self.context_x, |
| 60 | + context_y=self.context_y, |
| 61 | + ) |
| 62 | + |
| 63 | + self.acquisition_function.num_samples = 20 |
| 64 | + lig_2 = self.acquisition_function.acquisition( |
| 65 | + candidate_x=self.candidate_x, |
| 66 | + context_x=self.context_x, |
| 67 | + context_y=self.context_y, |
| 68 | + ) |
| 69 | + self.assertTrue(lig_2.item() < lig_1.item()) |
| 70 | + self.assertTrue(abs(lig_2.item() - lig_1.item()) < 0.2) |
| 71 | + |
| 72 | + def test_acquisition_invalid_inputs(self): |
| 73 | + invalid_context_x = torch.rand(10, self.x_dim + 5) |
| 74 | + with self.assertRaises(Exception): |
| 75 | + self.acquisition_function.acquisition( |
| 76 | + candidate_x=self.candidate_x, |
| 77 | + context_x=invalid_context_x, |
| 78 | + context_y=self.context_y, |
| 79 | + ) |
| 80 | + |
| 81 | + invalid_candidate_x = torch.rand(5, self.x_dim + 5) |
| 82 | + with self.assertRaises(Exception): |
| 83 | + self.acquisition_function.acquisition( |
| 84 | + candidate_x=invalid_candidate_x, |
| 85 | + context_x=self.context_x, |
| 86 | + context_y=self.context_y, |
| 87 | + ) |
| 88 | + |
| 89 | + |
| 90 | +if __name__ == "__main__": |
| 91 | + unittest.main() |
0 commit comments