|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# BSD-3-Clause |
| 3 | + |
| 4 | +# Owner(s): ["oncall: quantization"] |
| 5 | + |
| 6 | +import functools |
| 7 | +import platform |
| 8 | +import unittest |
| 9 | +from typing import Dict |
| 10 | + |
| 11 | +import torch |
| 12 | +import torch.nn as nn |
| 13 | +import torchao |
| 14 | +import torchao.quantization.pt2e.quantizer.arm_inductor_quantizer as armiq |
| 15 | +from torchao.quantization.pt2e.quantizer.arm_inductor_quantizer import ( |
| 16 | + ArmInductorQuantizer, |
| 17 | +) |
| 18 | +from torchao.quantization.pt2e.quantize_pt2e import convert_pt2e, prepare_pt2e |
| 19 | +from torchao.quantization.pt2e.inductor_passes.arm import ( |
| 20 | + _register_quantization_weight_pack_pass, |
| 21 | +) |
| 22 | + |
| 23 | +from torch.testing._internal.common_quantization import ( |
| 24 | + NodeSpec as ns, |
| 25 | + QuantizationTestCase, |
| 26 | + skipIfNoInductorSupport, |
| 27 | +) |
| 28 | +from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo |
| 29 | +from torchao.utils import TORCH_VERSION_AT_LEAST_2_5, TORCH_VERSION_AT_LEAST_2_7 |
| 30 | + |
| 31 | +# ----------------------------------------------------------------------------- # |
| 32 | +# Helper decorators # |
| 33 | +# ----------------------------------------------------------------------------- # |
| 34 | +def skipIfNoArm(fn): |
| 35 | + reason = "Quantized operations require Arm." |
| 36 | + if isinstance(fn, type): |
| 37 | + if platform.processor() != "aarch64": |
| 38 | + fn.__unittest_skip__ = True |
| 39 | + fn.__unittest_skip_why__ = reason |
| 40 | + return fn |
| 41 | + |
| 42 | + @functools.wraps(fn) |
| 43 | + def wrapper(*args, **kwargs): |
| 44 | + if platform.processor() != "aarch64": |
| 45 | + raise unittest.SkipTest(reason) |
| 46 | + return fn(*args, **kwargs) |
| 47 | + |
| 48 | + return wrapper |
| 49 | + |
| 50 | + |
| 51 | +# ----------------------------------------------------------------------------- # |
| 52 | +# Mini-models # |
| 53 | +# ----------------------------------------------------------------------------- # |
| 54 | +class _SingleConv2d(nn.Module): |
| 55 | + def __init__(self): |
| 56 | + super().__init__() |
| 57 | + self.conv = nn.Conv2d(3, 6, kernel_size=3, stride=1, padding=1) |
| 58 | + |
| 59 | + def forward(self, x): |
| 60 | + return self.conv(x) |
| 61 | + |
| 62 | + |
| 63 | +class _SingleLinear(nn.Module): |
| 64 | + def __init__(self, bias: bool = False): |
| 65 | + super().__init__() |
| 66 | + self.linear = nn.Linear(16, 16, bias=bias) |
| 67 | + |
| 68 | + def forward(self, x): |
| 69 | + return self.linear(x) |
| 70 | + |
| 71 | + |
| 72 | +if TORCH_VERSION_AT_LEAST_2_5: |
| 73 | + from torch.export import export_for_training |
| 74 | + |
| 75 | + |
| 76 | +# ----------------------------------------------------------------------------- # |
| 77 | +# Base harness # |
| 78 | +# ----------------------------------------------------------------------------- # |
| 79 | +class _ArmInductorPerTensorTestCase(QuantizationTestCase): |
| 80 | + def _test_quantizer( |
| 81 | + self, |
| 82 | + model: torch.nn.Module, |
| 83 | + example_inputs: tuple[torch.Tensor, ...], |
| 84 | + quantizer: ArmInductorQuantizer, |
| 85 | + expected_node_occurrence: Dict[torch._ops.OpOverload, int], |
| 86 | + expected_node_list=None, |
| 87 | + *, |
| 88 | + is_qat: bool = False, |
| 89 | + lower: bool = False, |
| 90 | + ): |
| 91 | + gm = export_for_training(model.eval(), example_inputs).module() |
| 92 | + |
| 93 | + gm = prepare_pt2e(gm, quantizer) |
| 94 | + gm(*example_inputs) |
| 95 | + gm = convert_pt2e(gm) |
| 96 | + |
| 97 | + if lower: |
| 98 | + # Register weight-pack pass (only affects per-tensor path; harmless otherwise) |
| 99 | + _register_quantization_weight_pack_pass(per_channel=False) |
| 100 | + from torch._inductor.constant_folding import constant_fold |
| 101 | + from torch._inductor.fx_passes.freezing_patterns import freezing_passes |
| 102 | + |
| 103 | + gm.recompile() |
| 104 | + freezing_passes(gm, example_inputs) |
| 105 | + constant_fold(gm) |
| 106 | + gm(*example_inputs) |
| 107 | + |
| 108 | + self.checkGraphModuleNodes( |
| 109 | + gm, |
| 110 | + expected_node_occurrence={ |
| 111 | + ns.call_function(k): v for k, v in expected_node_occurrence.items() |
| 112 | + }, |
| 113 | + expected_node_list=[ |
| 114 | + ns.call_function(n) for n in (expected_node_list or []) |
| 115 | + ], |
| 116 | + ) |
| 117 | + |
| 118 | + |
| 119 | +# ----------------------------------------------------------------------------- # |
| 120 | +# Test-suite # |
| 121 | +# ----------------------------------------------------------------------------- # |
| 122 | +@skipIfNoInductorSupport |
| 123 | +@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_7, "Requires torch 2.7+") |
| 124 | +class TestQuantizePT2EArmInductorPerTensor(_ArmInductorPerTensorTestCase): |
| 125 | + # ------------------------------------------------------------------ # |
| 126 | + # 1. Conv2d - per-tensor static PTQ # |
| 127 | + # ------------------------------------------------------------------ # |
| 128 | + @skipIfNoArm |
| 129 | + def test_conv2d_per_tensor_weight(self): |
| 130 | + example_inputs = (torch.randn(2, 3, 16, 16),) |
| 131 | + q = ArmInductorQuantizer().set_global( |
| 132 | + armiq.get_default_arm_inductor_quantization_config(is_per_channel=False) |
| 133 | + ) |
| 134 | + expected = { |
| 135 | + torch.ops.quantized_decomposed.quantize_per_tensor.default: 1, |
| 136 | + torch.ops.quantized_decomposed.dequantize_per_tensor.default: 2, |
| 137 | + torch.ops.quantized_decomposed.dequantize_per_channel.default: 0, |
| 138 | + } |
| 139 | + self._test_quantizer( |
| 140 | + _SingleConv2d(), example_inputs, q, expected, lower=True |
| 141 | + ) |
| 142 | + |
| 143 | + # ------------------------------------------------------------------ # |
| 144 | + # 2. Linear - per-tensor static PTQ # |
| 145 | + # ------------------------------------------------------------------ # |
| 146 | + @skipIfNoArm |
| 147 | + def test_linear_per_tensor_weight(self): |
| 148 | + example_inputs = (torch.randn(4, 16),) |
| 149 | + q = ArmInductorQuantizer().set_global( |
| 150 | + armiq.get_default_arm_inductor_quantization_config(is_per_channel=False) |
| 151 | + ) |
| 152 | + expected = { |
| 153 | + torch.ops.quantized_decomposed.quantize_per_tensor.default: 1, |
| 154 | + torch.ops.quantized_decomposed.dequantize_per_tensor.default: 2, |
| 155 | + torch.ops.quantized_decomposed.dequantize_per_channel.default: 0, |
| 156 | + } |
| 157 | + self._test_quantizer( |
| 158 | + _SingleLinear(), example_inputs, q, expected, lower=True |
| 159 | + ) |
| 160 | + |
| 161 | + # ------------------------------------------------------------------ # |
| 162 | + # 3. Linear - per-tensor **dynamic** # |
| 163 | + # ------------------------------------------------------------------ # |
| 164 | + @skipIfNoArm |
| 165 | + def test_linear_dynamic_per_tensor_weight(self): |
| 166 | + example_inputs = (torch.randn(8, 16),) |
| 167 | + q = ArmInductorQuantizer().set_global( |
| 168 | + armiq.get_default_arm_inductor_quantization_config( |
| 169 | + is_dynamic=True, is_per_channel=False |
| 170 | + ) |
| 171 | + ) |
| 172 | + expected = { |
| 173 | + torch.ops.quantized_decomposed.choose_qparams.tensor: 1, |
| 174 | + torch.ops.quantized_decomposed.quantize_per_tensor.tensor: 1, |
| 175 | + torch.ops.quantized_decomposed.dequantize_per_tensor.tensor: 1, |
| 176 | + torch.ops.quantized_decomposed.dequantize_per_tensor.default: 1, |
| 177 | + torch.ops.quantized_decomposed.dequantize_per_channel.default: 0, |
| 178 | + } |
| 179 | + self._test_quantizer( |
| 180 | + _SingleLinear(), example_inputs, q, expected, lower=True |
| 181 | + ) |
| 182 | + |
| 183 | + # ------------------------------------------------------------------ # |
| 184 | + # 4. Conv2d - **per-channel** static PTQ # |
| 185 | + # ------------------------------------------------------------------ # |
| 186 | + @skipIfNoArm |
| 187 | + def test_conv2d_per_channel_weight(self): |
| 188 | + example_inputs = (torch.randn(2, 3, 16, 16),) |
| 189 | + q = ArmInductorQuantizer().set_global( |
| 190 | + armiq.get_default_arm_inductor_quantization_config(is_per_channel=True) |
| 191 | + ) |
| 192 | + expected = { |
| 193 | + torch.ops.quantized_decomposed.quantize_per_tensor.default: 1, |
| 194 | + torch.ops.quantized_decomposed.dequantize_per_tensor.default: 1, |
| 195 | + torch.ops.quantized_decomposed.dequantize_per_channel.default: 1, |
| 196 | + } |
| 197 | + self._test_quantizer( |
| 198 | + _SingleConv2d(), example_inputs, q, expected, lower=True |
| 199 | + ) |
| 200 | + |
| 201 | + # ------------------------------------------------------------------ # |
| 202 | + # 5. Linear - **per-channel** static PTQ # |
| 203 | + # ------------------------------------------------------------------ # |
| 204 | + @skipIfNoArm |
| 205 | + def test_linear_per_channel_weight(self): |
| 206 | + example_inputs = (torch.randn(4, 16),) |
| 207 | + q = ArmInductorQuantizer().set_global( |
| 208 | + armiq.get_default_arm_inductor_quantization_config(is_per_channel=True) |
| 209 | + ) |
| 210 | + expected = { |
| 211 | + torch.ops.quantized_decomposed.quantize_per_tensor.default: 1, |
| 212 | + torch.ops.quantized_decomposed.dequantize_per_tensor.default: 1, |
| 213 | + torch.ops.quantized_decomposed.dequantize_per_channel.default: 1, |
| 214 | + } |
| 215 | + self._test_quantizer( |
| 216 | + _SingleLinear(), example_inputs, q, expected, lower=True |
| 217 | + ) |
| 218 | + |
| 219 | + # ------------------------------------------------------------------ # |
| 220 | + # 6. Conv2d - **QAT** per-tensor # |
| 221 | + # ------------------------------------------------------------------ # |
| 222 | + @skipIfTorchDynamo("slow under Dynamo") |
| 223 | + @skipIfNoArm |
| 224 | + def test_conv2d_qat_per_tensor_weight(self): |
| 225 | + example_inputs = (torch.randn(2, 3, 16, 16),) |
| 226 | + q = ArmInductorQuantizer().set_global( |
| 227 | + armiq.get_default_arm_inductor_quantization_config(is_qat=True) |
| 228 | + ) |
| 229 | + expected = { |
| 230 | + torch.ops.quantized_decomposed.quantize_per_tensor.default: 1, |
| 231 | + torch.ops.quantized_decomposed.dequantize_per_tensor.default: 2, |
| 232 | + torch.ops.quantized_decomposed.dequantize_per_channel.default: 0, |
| 233 | + } |
| 234 | + self._test_quantizer( |
| 235 | + _SingleConv2d(), |
| 236 | + example_inputs, |
| 237 | + q, |
| 238 | + expected, |
| 239 | + is_qat=True, |
| 240 | + lower=True, |
| 241 | + ) |
| 242 | + |
| 243 | + # ------------------------------------------------------------------ # |
| 244 | + # 7. Linear - **dynamic + QAT** per-tensor # |
| 245 | + # ------------------------------------------------------------------ # |
| 246 | + @skipIfTorchDynamo("slow under Dynamo") |
| 247 | + @skipIfNoArm |
| 248 | + def test_linear_dynamic_qat_per_tensor_weight(self): |
| 249 | + example_inputs = (torch.randn(8, 16),) |
| 250 | + q = ArmInductorQuantizer().set_global( |
| 251 | + armiq.get_default_arm_inductor_quantization_config( |
| 252 | + is_dynamic=True, is_qat=True, is_per_channel=False |
| 253 | + ) |
| 254 | + ) |
| 255 | + expected = { |
| 256 | + torch.ops.quantized_decomposed.choose_qparams.tensor: 1, |
| 257 | + torch.ops.quantized_decomposed.quantize_per_tensor.tensor: 1, |
| 258 | + torch.ops.quantized_decomposed.dequantize_per_tensor.tensor: 1, |
| 259 | + torch.ops.quantized_decomposed.dequantize_per_tensor.default: 1, |
| 260 | + torch.ops.quantized_decomposed.dequantize_per_channel.default: 0, |
| 261 | + } |
| 262 | + self._test_quantizer( |
| 263 | + _SingleLinear(), |
| 264 | + example_inputs, |
| 265 | + q, |
| 266 | + expected, |
| 267 | + is_qat=True, |
| 268 | + lower=True, |
| 269 | + ) |
| 270 | + |
| 271 | + |
| 272 | +if __name__ == "__main__": |
| 273 | + run_tests() |
0 commit comments