|
| 1 | +// Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +// All rights reserved. |
| 3 | +// |
| 4 | +// This source code is licensed under the license found in the |
| 5 | +// LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +#pragma once |
| 8 | + |
| 9 | +#if defined(__aarch64__) || defined(__ARM_NEON) |
| 10 | + |
| 11 | +#include <torchao/experimental/kernels/cpu/aarch64/quantization/quantize.h> |
| 12 | +#include <torchao/experimental/kernels/cpu/aarch64/reduction/reduction.h> |
| 13 | +#include <torchao/experimental/kernels/cpu/aarch64/tests/test_utils.h> |
| 14 | +#include <cassert> |
| 15 | +#include <functional> |
| 16 | +#include <random> |
| 17 | +#include <vector> |
| 18 | + |
| 19 | +namespace torchao { |
| 20 | +struct channelwise_8bit_a_channelwise_8bit_b_q_at_k_attention_test_case { |
| 21 | + int b; |
| 22 | + int s_q; |
| 23 | + int s_k; |
| 24 | + int h; |
| 25 | + int d; |
| 26 | + bool tranposed; |
| 27 | + |
| 28 | + size_t b_q_stride; |
| 29 | + size_t h_q_stride; |
| 30 | + size_t s_q_stride; |
| 31 | + |
| 32 | + size_t b_k_stride; |
| 33 | + size_t h_k_stride; |
| 34 | + size_t s_k_stride; |
| 35 | + |
| 36 | + size_t b_q_qparams_stride; |
| 37 | + size_t h_q_qparams_stride; |
| 38 | + size_t s_q_qparams_stride; |
| 39 | + |
| 40 | + size_t b_k_qparams_stride; |
| 41 | + size_t h_k_qparams_stride; |
| 42 | + size_t s_k_qparams_stride; |
| 43 | + |
| 44 | + std::vector<float> expected_output; |
| 45 | + |
| 46 | + std::vector<float> q; |
| 47 | + std::vector<int8_t> q_qvals; |
| 48 | + std::vector<float> q_scales; |
| 49 | + std::vector<int8_t> q_zeros; |
| 50 | + |
| 51 | + std::vector<float> k; |
| 52 | + std::vector<int8_t> k_qvals; |
| 53 | + std::vector<float> k_scales; |
| 54 | + std::vector<int8_t> k_zeros; |
| 55 | + |
| 56 | + channelwise_8bit_a_channelwise_8bit_b_q_at_k_attention_test_case( |
| 57 | + int b_, |
| 58 | + int s_q_, |
| 59 | + int s_k_, |
| 60 | + int h_, |
| 61 | + int d_, |
| 62 | + int transposed_, |
| 63 | + size_t b_q_stride_, |
| 64 | + size_t h_q_stride_, |
| 65 | + size_t s_q_stride_, |
| 66 | + size_t b_k_stride_, |
| 67 | + size_t h_k_stride_, |
| 68 | + size_t s_k_stride_, |
| 69 | + size_t b_q_qparams_stride_, |
| 70 | + size_t h_q_qparams_stride_, |
| 71 | + size_t s_q_qparams_stride_, |
| 72 | + size_t b_k_qparams_stride_, |
| 73 | + size_t h_k_qparams_stride_, |
| 74 | + size_t s_k_qparams_stride_, |
| 75 | + std::vector<float> expected_output_, |
| 76 | + std::vector<float> q_, |
| 77 | + std::vector<int8_t> q_qvals_, |
| 78 | + std::vector<float> q_scales_, |
| 79 | + std::vector<int8_t> q_zeros_, |
| 80 | + std::vector<float> k_, |
| 81 | + std::vector<int8_t> k_qvals_, |
| 82 | + std::vector<float> k_scales_, |
| 83 | + std::vector<int8_t> k_zeros_) |
| 84 | + : b(b_), |
| 85 | + s_q(s_q_), |
| 86 | + s_k(s_k_), |
| 87 | + h(h_), |
| 88 | + d(d_), |
| 89 | + tranposed(transposed_), |
| 90 | + b_q_stride(b_q_stride_), |
| 91 | + h_q_stride(h_q_stride_), |
| 92 | + s_q_stride(s_q_stride_), |
| 93 | + b_k_stride(b_k_stride_), |
| 94 | + h_k_stride(h_k_stride_), |
| 95 | + s_k_stride(s_k_stride_), |
| 96 | + b_q_qparams_stride(b_q_qparams_stride_), |
| 97 | + h_q_qparams_stride(h_q_qparams_stride_), |
| 98 | + s_q_qparams_stride(s_q_qparams_stride_), |
| 99 | + b_k_qparams_stride(b_k_qparams_stride_), |
| 100 | + h_k_qparams_stride(h_k_qparams_stride_), |
| 101 | + s_k_qparams_stride(s_k_qparams_stride_), |
| 102 | + expected_output(expected_output_), |
| 103 | + q(q_), |
| 104 | + q_qvals(q_qvals_), |
| 105 | + q_scales(q_scales_), |
| 106 | + q_zeros(q_zeros_), |
| 107 | + k(k_), |
| 108 | + k_qvals(k_qvals_), |
| 109 | + k_scales(k_scales_), |
| 110 | + k_zeros(k_zeros_) { |
| 111 | + assert(expected_output.size() == b * s_q * h * s_k); |
| 112 | + assert(q.size() == b * s_q * h * d); |
| 113 | + assert(q_qvals.size() == b * s_q * h * d); |
| 114 | + assert(q_scales.size() == b * s_q * h); |
| 115 | + assert(q_zeros.size() == b * s_q * h); |
| 116 | + assert(k.size() == b * s_k * h * d); |
| 117 | + assert(k_qvals.size() == b * s_k * h * d); |
| 118 | + assert(k_scales.size() == b * s_k * h); |
| 119 | + assert(k_zeros.size() == b * s_k * h); |
| 120 | + } |
| 121 | + |
| 122 | + static channelwise_8bit_a_channelwise_8bit_b_q_at_k_attention_test_case |
| 123 | + generate(int b, int s_q, int s_k, int h, int d, bool transposed = true) { |
| 124 | + // Generate activations |
| 125 | + auto [lhs, lhs_qvals, lhs_scales, lhs_zeros] = |
| 126 | + torchao::test_utils::generate_per_token_quantized_tensor( |
| 127 | + b * s_q * h, d); |
| 128 | + |
| 129 | + auto [rhs, rhs_qvals, rhs_scales, rhs_zeros] = |
| 130 | + torchao::test_utils::generate_per_token_quantized_tensor( |
| 131 | + b * s_k * h, d); |
| 132 | + // Above function produces nxk matrix and to produce kxn you need transposed |
| 133 | + // = true. we do !rhs_is_transposed becaues when rhs_is_transposed = true |
| 134 | + // the shape should be nxk instead of kxn. |
| 135 | + |
| 136 | + size_t b_q_stride = h * s_q * d; |
| 137 | + size_t h_q_stride = s_q * d; |
| 138 | + size_t s_q_stride = d; |
| 139 | + |
| 140 | + size_t b_k_stride = h * s_k * d; |
| 141 | + size_t h_k_stride = s_k * d; |
| 142 | + size_t s_k_stride = d; |
| 143 | + |
| 144 | + size_t b_q_qparams_stride = h * s_q; |
| 145 | + size_t h_q_qparams_stride = s_q; |
| 146 | + size_t s_q_qparams_stride = 1; |
| 147 | + |
| 148 | + size_t b_k_qparams_stride = h * s_k; |
| 149 | + size_t h_k_qparams_stride = s_k; |
| 150 | + size_t s_k_qparams_stride = 1; |
| 151 | + |
| 152 | + if (!transposed) { |
| 153 | + h_q_stride = d; |
| 154 | + s_q_stride = h * d; |
| 155 | + h_k_stride = d; |
| 156 | + s_k_stride = h * d; |
| 157 | + |
| 158 | + s_q_qparams_stride = h; |
| 159 | + h_q_qparams_stride = 1; |
| 160 | + |
| 161 | + s_k_qparams_stride = h; |
| 162 | + h_k_qparams_stride = 1; |
| 163 | + } |
| 164 | + |
| 165 | + // Compute expected output |
| 166 | + std::vector<float> expected_output(b * h * s_q * s_k); |
| 167 | + size_t b_out_stride = h * s_q * s_k; |
| 168 | + size_t h_out_stride = s_q * s_k; |
| 169 | + size_t s_q_out_stride = s_k; |
| 170 | + |
| 171 | + for (int b_idx = 0; b_idx < b; b_idx++) { |
| 172 | + for (int s_q_idx = 0; s_q_idx < s_q; s_q_idx++) { |
| 173 | + for (int h_idx = 0; h_idx < h; h_idx++) { |
| 174 | + for (int s_k_idx = 0; s_k_idx < s_k; s_k_idx++) { |
| 175 | + float res = 0.0; |
| 176 | + for (int d_idx = 0; d_idx < d; d_idx++) { |
| 177 | + int lhs_idx = b_idx * b_q_stride + s_q_idx * s_q_stride + |
| 178 | + h_idx * h_q_stride + d_idx; |
| 179 | + int rhs_idx = b_idx * b_k_stride + s_k_idx * s_k_stride + |
| 180 | + h_idx * h_k_stride + d_idx; |
| 181 | + int lhs_scales_zp_idx = b_idx * b_q_qparams_stride + |
| 182 | + h_idx * h_q_qparams_stride + s_q_idx * s_q_qparams_stride; |
| 183 | + int rhs_scales_zp_idx = b_idx * b_k_qparams_stride * h + |
| 184 | + h_idx * h_k_qparams_stride + s_k_idx * s_k_qparams_stride; |
| 185 | + float lhs_dequant = lhs_scales[lhs_scales_zp_idx] * |
| 186 | + (lhs_qvals[lhs_idx] - lhs_zeros[lhs_scales_zp_idx]); |
| 187 | + |
| 188 | + float rhs_dequant = rhs_scales[rhs_scales_zp_idx] * |
| 189 | + (rhs_qvals[rhs_idx] - rhs_zeros[rhs_scales_zp_idx]); |
| 190 | + |
| 191 | + res += lhs_dequant * rhs_dequant; |
| 192 | + } |
| 193 | + expected_output |
| 194 | + [b_idx * b_out_stride + s_q_idx * s_q_out_stride + |
| 195 | + h_idx * h_out_stride + s_k_idx] = res; |
| 196 | + } |
| 197 | + } |
| 198 | + } |
| 199 | + } |
| 200 | + |
| 201 | + // Return test case |
| 202 | + return channelwise_8bit_a_channelwise_8bit_b_q_at_k_attention_test_case( |
| 203 | + b, |
| 204 | + s_q, |
| 205 | + s_k, |
| 206 | + h, |
| 207 | + d, |
| 208 | + transposed, |
| 209 | + b_q_stride, |
| 210 | + h_q_stride, |
| 211 | + s_q_stride, |
| 212 | + b_k_stride, |
| 213 | + h_k_stride, |
| 214 | + s_k_stride, |
| 215 | + b_q_qparams_stride, |
| 216 | + h_q_qparams_stride, |
| 217 | + s_q_qparams_stride, |
| 218 | + b_k_qparams_stride, |
| 219 | + h_k_qparams_stride, |
| 220 | + s_k_qparams_stride, |
| 221 | + expected_output, |
| 222 | + lhs, |
| 223 | + lhs_qvals, |
| 224 | + lhs_scales, |
| 225 | + lhs_zeros, |
| 226 | + rhs, |
| 227 | + rhs_qvals, |
| 228 | + rhs_scales, |
| 229 | + rhs_zeros); |
| 230 | + } |
| 231 | +}; |
| 232 | + |
| 233 | +} // namespace torchao |
| 234 | + |
| 235 | +#endif // defined(__aarch64__) || defined(__ARM_NEON) |
0 commit comments