You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
"""Convert the weight of linear modules in the model with `apply_tensor_subclass`.
@@ -63,8 +100,8 @@ def sparsify_(
63
100
64
101
Args:
65
102
model (torch.nn.Module): input model
66
-
apply_tensor_subclass (Callable[[torch.Tensor], torch.Tensor]): function that convert a floating point Tensor to a (sparsified) tensor subclass instance (e.g. affine quantized tensor instance)
67
-
filter_fn (Optional[Callable[[torch.nn.Module, str], bool]]): function that takes a nn.Module instance and fully qualified name of the module, returns True if we want to run `apply_tensor_subclass` on the weight of the module
103
+
config (AOBaseConfig): a workflow configuration object
104
+
filter_fn (Optional[Callable[[torch.nn.Module, str], bool]]): function that takes a nn.Module instance and fully qualified name of the module, returns True if we want to apply the specified workflow to this module.
0 commit comments