|
| 1 | +from typing import Optional, Tuple |
| 2 | + |
| 3 | +import torch |
| 4 | + |
| 5 | +from torchao.float8.config import ScalingGranularity |
| 6 | +from torchao.float8.float8_utils import tensor_to_scale, to_fp8_saturated |
| 7 | + |
| 8 | + |
| 9 | +def _scaled_grouped_mm( |
| 10 | + A: torch.Tensor, |
| 11 | + B_t: torch.Tensor, |
| 12 | + offs: torch.Tensor, |
| 13 | + out_dtype: Optional[torch.dtype] = None, |
| 14 | +) -> torch.Tensor: |
| 15 | + """ |
| 16 | + This function performs dynamic float8 quantization with row-wise scaling |
| 17 | + on the input tensors A and B, then performs a scaled grouped GEMM and returns the results. |
| 18 | +
|
| 19 | + Args: |
| 20 | + A (bf16/float32 torch.Tensor): The first high-precision input tensor, which must be a 2D tensor of shape (M * num_groups, K) |
| 21 | + and in row-major memory layout. |
| 22 | + B_t (bf16/float32 torch.Tensor): The second high-precision input tensor which must be 3D, which must be shape (B, K, N) |
| 23 | + and in column-major memory layout. |
| 24 | + offs (int32 torch.Tensor): The offsets to use to mark the starting index of each group along dim0 of the A tensor. |
| 25 | + out_dtype (Optional[torch.dtype]): The dtype of the output tensor. Currently only torch.bfloat16 is supported. |
| 26 | + """ |
| 27 | + return _Float8GroupedMM.apply( |
| 28 | + A, |
| 29 | + B_t, |
| 30 | + offs, |
| 31 | + out_dtype, |
| 32 | + ) |
| 33 | + |
| 34 | + |
| 35 | +class _Float8GroupedMM(torch.autograd.Function): |
| 36 | + """Differentiable implementation of grouped GEMM with dynamic float8 quantization.""" |
| 37 | + |
| 38 | + @staticmethod |
| 39 | + def forward( |
| 40 | + ctx, |
| 41 | + A: torch.Tensor, |
| 42 | + B_t: torch.Tensor, |
| 43 | + offs: torch.Tensor, |
| 44 | + out_dtype: Optional[torch.dtype] = None, |
| 45 | + ) -> torch.Tensor: |
| 46 | + # torchao _scaled_grouped_mm only supports A=2D, B=3D. |
| 47 | + assert A.ndim == 2, "A must be 2D" |
| 48 | + assert B_t.ndim == 3, "B must be 3D" |
| 49 | + |
| 50 | + assert ( |
| 51 | + A.size(-1) % 16 == 0 |
| 52 | + ), f"A must have a last dim divisible by 16, but got shape: {A.shape}" |
| 53 | + assert ( |
| 54 | + B_t.size(-2) % 16 == 0 and B_t.size(-1) % 16 == 0 |
| 55 | + ), f"B must have last 2 dims divisible by 16, but got shape: {B_t.shape}" |
| 56 | + |
| 57 | + # Assert input tensors are in high-precision dtypes. |
| 58 | + assert ( |
| 59 | + A.dtype == torch.float32 or A.dtype == torch.bfloat16 |
| 60 | + ), "A must be float32 or bfloat16" |
| 61 | + assert ( |
| 62 | + B_t.dtype == torch.float32 or B_t.dtype == torch.bfloat16 |
| 63 | + ), "B must be float32 or bfloat16" |
| 64 | + assert offs.dtype == torch.int32, "offs must be int32" |
| 65 | + |
| 66 | + # Assert A and B dims are compatible for a scaled grouped GEMM. |
| 67 | + assert A.size(-1) == B_t.size( |
| 68 | + -2 |
| 69 | + ), f"shape {A.shape} and {B_t.shape} are not compatible for _scaled_grouped_mm" |
| 70 | + |
| 71 | + # The left operand in the scaled grouped GEMM must be row-major due to hardware requirements. |
| 72 | + assert not _is_column_major(A), "A must be row-major" |
| 73 | + |
| 74 | + # Due to hardware requirements, the right operand in a scaled grouped GEMM must be column-major. |
| 75 | + assert _is_column_major(B_t), "B must be column-major" |
| 76 | + |
| 77 | + # Convert high precision input tensor to float8, row-major for left operand of grouped GEMM. |
| 78 | + # A shape: (M, K) |
| 79 | + # A_scales shape: (M,1) |
| 80 | + A_scales = tensor_to_scale( |
| 81 | + A, |
| 82 | + torch.float8_e4m3fn, |
| 83 | + scaling_granularity=ScalingGranularity.AXISWISE, |
| 84 | + axiswise_dim=-1, |
| 85 | + round_scales_to_power_of_2=True, |
| 86 | + ) |
| 87 | + A_scaled = A.to(torch.float32) * A_scales |
| 88 | + A_fp8_row_major = to_fp8_saturated(A_scaled, torch.float8_e4m3fn) |
| 89 | + |
| 90 | + # Convert B to float8, column-major for right operand of grouped GEMM. |
| 91 | + # B shape: (B, K, N) |
| 92 | + # B scales must be computed rowwise keeping the outer/final dim, so: |
| 93 | + # B_scales shape: (B, 1, N) |
| 94 | + B_t_scales = tensor_to_scale( |
| 95 | + B_t, |
| 96 | + torch.float8_e4m3fn, |
| 97 | + scaling_granularity=ScalingGranularity.AXISWISE, |
| 98 | + axiswise_dim=-2, |
| 99 | + round_scales_to_power_of_2=True, |
| 100 | + ) |
| 101 | + B_t_scaled = B_t.to(torch.float32) * B_t_scales |
| 102 | + B_t_fp8_col_major = to_fp8_saturated(B_t_scaled, torch.float8_e4m3fn) |
| 103 | + |
| 104 | + # Precompute non-transposed B column-major for backward, to save memory by storing the |
| 105 | + # low precision B tensor instead of the high precision B tensor. |
| 106 | + # In the backward this is needed for grad_A: grad_output @ B. |
| 107 | + B = B_t.contiguous().transpose(-2, -1) |
| 108 | + |
| 109 | + # - B shape: (B, K, N) |
| 110 | + # - B scales must be computed rowwise keeping the outer/final dim, so: |
| 111 | + # - B_scale shape: (B, 1, N) |
| 112 | + B_scales = tensor_to_scale( |
| 113 | + B, |
| 114 | + torch.float8_e4m3fn, |
| 115 | + scaling_granularity=ScalingGranularity.AXISWISE, |
| 116 | + axiswise_dim=-2, |
| 117 | + round_scales_to_power_of_2=True, |
| 118 | + ) |
| 119 | + B_scaled = B.to(torch.float32) * B_scales |
| 120 | + B_fp8_col_major = to_fp8_saturated(B_scaled, torch.float8_e4m3fn) |
| 121 | + |
| 122 | + # Store what we need for backward. |
| 123 | + ctx.save_for_backward(A, B_fp8_col_major, B_scales, offs) |
| 124 | + ctx.out_dtype = out_dtype |
| 125 | + |
| 126 | + # Perform scaled grouped GEMM and return result. |
| 127 | + # output shape: scaled grouped mm of (M,K) @ (B,K,N) = (M,N) |
| 128 | + return torch._scaled_grouped_mm( |
| 129 | + A_fp8_row_major, |
| 130 | + B_t_fp8_col_major, |
| 131 | + A_scales.squeeze().reciprocal(), |
| 132 | + B_t_scales.squeeze().reciprocal(), |
| 133 | + offs, |
| 134 | + out_dtype=out_dtype, |
| 135 | + use_fast_accum=True, |
| 136 | + ) |
| 137 | + |
| 138 | + @staticmethod |
| 139 | + def backward(ctx, grad_output: torch.Tensor): |
| 140 | + A, B_fp8_col_major, B_scales, offs = ctx.saved_tensors |
| 141 | + out_dtype = ctx.out_dtype |
| 142 | + |
| 143 | + # Convert grad_output to float8, row-major for left operand of grouped GEMM |
| 144 | + # needed for grad_A: grad_output @ B |
| 145 | + # |
| 146 | + # grad_output shape: (M, N) |
| 147 | + # grad_output_scale shape: (M, 1) |
| 148 | + grad_output_scales = tensor_to_scale( |
| 149 | + grad_output, |
| 150 | + torch.float8_e4m3fn, |
| 151 | + scaling_granularity=ScalingGranularity.AXISWISE, |
| 152 | + axiswise_dim=-1, |
| 153 | + round_scales_to_power_of_2=True, |
| 154 | + ) |
| 155 | + grad_output_scaled = grad_output.to(torch.float32) * grad_output_scales |
| 156 | + grad_output_fp8_row_major = to_fp8_saturated( |
| 157 | + grad_output_scaled, torch.float8_e4m3fn |
| 158 | + ) |
| 159 | + |
| 160 | + # Compute grad_A. |
| 161 | + # |
| 162 | + # grad_A = grad_output @ B |
| 163 | + # grad_A = scaled grouped mm of (M,N) @ (B,N,K) = (M,K) |
| 164 | + grad_A = torch._scaled_grouped_mm( |
| 165 | + grad_output_fp8_row_major, |
| 166 | + B_fp8_col_major, |
| 167 | + grad_output_scales.squeeze().reciprocal(), |
| 168 | + B_scales.squeeze().reciprocal(), |
| 169 | + offs, |
| 170 | + out_dtype=out_dtype, |
| 171 | + use_fast_accum=True, |
| 172 | + ) |
| 173 | + |
| 174 | + # Convert tranpose of grad_output to float8, row-major for left operand of grouped GEMM |
| 175 | + # needed for grad_B: grad_output_t @ A |
| 176 | + grad_output_t_row_major = grad_output.transpose(-2, -1).contiguous() |
| 177 | + |
| 178 | + # Convert A to float8, column-major for right operand of grouped GEMM: |
| 179 | + # needed for grad_B: grad_output @ A |
| 180 | + A_col_major = A.transpose(-2, -1).contiguous().transpose(-2, -1) |
| 181 | + |
| 182 | + # grad_B is a special case. both operands of the grouped gemm will be 2D with offsets determing the "groups." |
| 183 | + # Compute scales for grad_output_t and A, which are both 2D tensors with offsets which define the "jagged" groups. |
| 184 | + grad_output_t_fp8_row_major, grad_output_t_scales = ( |
| 185 | + _to_2d_jagged_float8_tensor_rowwise( |
| 186 | + grad_output_t_row_major, |
| 187 | + offs, |
| 188 | + target_dtype=torch.float8_e4m3fn, |
| 189 | + round_scales_to_power_of_2=True, |
| 190 | + ) |
| 191 | + ) |
| 192 | + A_fp8_col_major, A_scales = _to_2d_jagged_float8_tensor_colwise( |
| 193 | + A_col_major, |
| 194 | + offs, |
| 195 | + target_dtype=torch.float8_e4m3fn, |
| 196 | + round_scales_to_power_of_2=True, |
| 197 | + ) |
| 198 | + |
| 199 | + # Compute grad_B = grad_output_t @ A. |
| 200 | + # grad_B = grad_output_t @ A |
| 201 | + # grad_B = (N,M) @ (M,K) = (N,K) |
| 202 | + grad_B = torch._scaled_grouped_mm( |
| 203 | + grad_output_t_fp8_row_major, |
| 204 | + A_fp8_col_major, |
| 205 | + grad_output_t_scales.reciprocal(), |
| 206 | + A_scales.reciprocal(), |
| 207 | + offs, |
| 208 | + out_dtype=out_dtype, |
| 209 | + use_fast_accum=True, |
| 210 | + ) |
| 211 | + return grad_A, grad_B.transpose(-2, -1), None, None, None, None |
| 212 | + |
| 213 | + |
| 214 | +def _to_2d_jagged_float8_tensor_colwise( |
| 215 | + A_col_major: torch.Tensor, |
| 216 | + offs: torch.Tensor, |
| 217 | + target_dtype: torch.dtype = torch.float8_e4m3fn, |
| 218 | + round_scales_to_power_of_2: bool = False, |
| 219 | +) -> Tuple[torch.Tensor, torch.Tensor]: |
| 220 | + """ |
| 221 | + This function converts the 2D input tensor A to a jagged float8 tensor, |
| 222 | + with scales computed along *logical columns* for each group individually, |
| 223 | + where groups are determined based on the offsets. |
| 224 | +
|
| 225 | + For the right operand of a normal scaled GEMM, the rowwise scales are computed over logical columns. |
| 226 | + (i.e., a tensor of (K,N) will have scales of shape (1,N). |
| 227 | +
|
| 228 | + However, for a 2D right operand of a grouped GEMM, these logical columns go through multiple distinct |
| 229 | + groups/subtensors, for which we want to compute scales individually. So we cannot take one set of scales |
| 230 | + along the logical columns and apply it to the entire tensor. |
| 231 | +
|
| 232 | + Instead, we need to compute scales for each subtensor individually. For a tensor of shape (K,N) this results |
| 233 | + in scales of shape (1,N * num_groups). |
| 234 | +
|
| 235 | + Args: |
| 236 | + A (torch.Tensor): The input tensor to be converted to a jagged float8 tensor. |
| 237 | +
|
| 238 | + Returns: |
| 239 | + A tuple containing the jagged float8 tensor and the scales used for the conversion. |
| 240 | + """ |
| 241 | + assert A_col_major.ndim == 2, "A must be 2D" |
| 242 | + |
| 243 | + num_groups = offs.numel() |
| 244 | + A_fp8_col_major = torch.empty_like(A_col_major, dtype=target_dtype) |
| 245 | + A_scales = torch.empty( |
| 246 | + A_fp8_col_major.size(1) * num_groups, |
| 247 | + dtype=torch.float32, |
| 248 | + device=A_fp8_col_major.device, |
| 249 | + ) |
| 250 | + |
| 251 | + start_idx = 0 |
| 252 | + next_scale_idx = 0 |
| 253 | + for end_idx in offs.tolist(): |
| 254 | + # Get the subtensor of A for this group, fetching the next group of rows, with all columns for each. |
| 255 | + subtensor = A_col_major[start_idx:end_idx, :] # (local_group_size, K) |
| 256 | + |
| 257 | + # Compute local rowwise scales for this subtensor, which are along logical columns for the right operand. |
| 258 | + subtensor_scales = tensor_to_scale( |
| 259 | + subtensor, |
| 260 | + target_dtype, |
| 261 | + scaling_granularity=ScalingGranularity.AXISWISE, |
| 262 | + axiswise_dim=0, |
| 263 | + round_scales_to_power_of_2=round_scales_to_power_of_2, |
| 264 | + ) |
| 265 | + |
| 266 | + # Apply scales to subtensor and convert to float8. |
| 267 | + tensor_scaled = subtensor.to(torch.float32) * subtensor_scales |
| 268 | + float8_subtensor = to_fp8_saturated(tensor_scaled, target_dtype) |
| 269 | + |
| 270 | + # Store this portion of the resulting float8 tensor and scales. |
| 271 | + A_fp8_col_major[start_idx:end_idx, :] = float8_subtensor |
| 272 | + A_scales[next_scale_idx : next_scale_idx + subtensor_scales.numel()] = ( |
| 273 | + subtensor_scales.squeeze() |
| 274 | + ) |
| 275 | + |
| 276 | + # Update start index for next group. |
| 277 | + start_idx = end_idx |
| 278 | + next_scale_idx += subtensor_scales.numel() |
| 279 | + |
| 280 | + return A_fp8_col_major, A_scales |
| 281 | + |
| 282 | + |
| 283 | +def _to_2d_jagged_float8_tensor_rowwise( |
| 284 | + x: torch.Tensor, |
| 285 | + offs: torch.Tensor, |
| 286 | + target_dtype: torch.dtype, |
| 287 | + round_scales_to_power_of_2: bool = False, |
| 288 | +) -> Tuple[torch.Tensor, torch.Tensor]: |
| 289 | + """ |
| 290 | + This function converts the 2D input tensor to a jagged float8 tensor, |
| 291 | + with scales computed along *logical rows* for each group individually, |
| 292 | + where groups are determined based on the offsets. |
| 293 | +
|
| 294 | + For a 2D *left* operand of a normal scaled GEMM, the rowwise scales are computed over logical rows. |
| 295 | + (i.e., a tensor of (M,K) will have scales of shape (M,1). |
| 296 | +
|
| 297 | + However, for a 2D left operand of a grouped GEMM, these logical rows go through multiple distinct |
| 298 | + groups/subtensors, for which we want to compute scales individually. So we cannot take one set of scales |
| 299 | + along the logical rows and apply it to the entire tensor. |
| 300 | +
|
| 301 | + Instead, we need to compute scales for each subtensor individually. For a tensor of shape (M,K) this results |
| 302 | + in scales of shape (M * num_groups, 1). |
| 303 | +
|
| 304 | + Args: |
| 305 | + A (torch.Tensor): The input tensor to be converted to a jagged float8 tensor. |
| 306 | +
|
| 307 | + Returns: |
| 308 | + A tuple containing the jagged float8 tensor and the scales used for the conversion. |
| 309 | + """ |
| 310 | + assert x.ndim == 2, "input tensor must be 2D" |
| 311 | + |
| 312 | + num_groups = offs.numel() |
| 313 | + x_fp8 = torch.empty_like(x, dtype=target_dtype) |
| 314 | + x_scales = torch.empty( |
| 315 | + x_fp8.size(0) * num_groups, dtype=torch.float32, device=x_fp8.device |
| 316 | + ) |
| 317 | + |
| 318 | + start_idx = 0 |
| 319 | + next_scale_idx = 0 |
| 320 | + for end_idx in offs.tolist(): |
| 321 | + # Get the subtensor of A for this group, fetching all rows with the next group of rows. |
| 322 | + subtensor = x[:, start_idx:end_idx] # (M, local_group_size) |
| 323 | + |
| 324 | + # Compute local rowwise scales for this subtensor, which are along logical rows for the left operand. |
| 325 | + subtensor_scales = tensor_to_scale( |
| 326 | + subtensor, |
| 327 | + target_dtype, |
| 328 | + scaling_granularity=ScalingGranularity.AXISWISE, |
| 329 | + axiswise_dim=-1, |
| 330 | + round_scales_to_power_of_2=round_scales_to_power_of_2, |
| 331 | + ) |
| 332 | + |
| 333 | + # Apply scales to subtensor and convert to float8. |
| 334 | + tensor_scaled = subtensor.to(torch.float32) * subtensor_scales |
| 335 | + float8_subtensor = to_fp8_saturated(tensor_scaled, target_dtype) |
| 336 | + |
| 337 | + # Store this portion of the resulting float8 tensor and scales. |
| 338 | + x_fp8[:, start_idx:end_idx] = float8_subtensor |
| 339 | + x_scales[next_scale_idx : next_scale_idx + subtensor_scales.numel()] = ( |
| 340 | + subtensor_scales.squeeze() |
| 341 | + ) |
| 342 | + |
| 343 | + # Update start index for next group. |
| 344 | + start_idx = end_idx |
| 345 | + next_scale_idx += subtensor_scales.numel() |
| 346 | + |
| 347 | + return x_fp8, x_scales |
| 348 | + |
| 349 | + |
| 350 | +def _is_column_major(x: torch.Tensor) -> bool: |
| 351 | + """ |
| 352 | + This function checks if the input tensor is column-major. |
| 353 | +
|
| 354 | + Args: |
| 355 | + x (torch.Tensor): The input tensor to be checked. |
| 356 | +
|
| 357 | + Returns: |
| 358 | + A boolean indicating whether the input tensor is column-major. |
| 359 | + """ |
| 360 | + assert x.ndim == 2 or x.ndim == 3, "input tensor must be 2D or 3D" |
| 361 | + return x.stride(-2) == 1 and x.stride(-1) > 1 |
0 commit comments